scholarly journals Water relations of field-grown grapevines in the São Francisco Valley, Brazil, under different rootstocks and irrigation strategies

2009 ◽  
Vol 66 (4) ◽  
pp. 436-446 ◽  
Author(s):  
Claudia Rita de Souza ◽  
Luís Henrique Bassoi ◽  
José Moacir Pinheiro Lima Filho ◽  
Fabrício Francisco Santos da Silva ◽  
Leandro Hespanhol Viana ◽  
...  

There is an increased demand for high quality winegrapes in the São Francisco Valley, a new wine producing area in Brazil. As the grape quality is closely linked to the soil water status, understanding the effects of rootstock and irrigation management on grapevine water relations is essential to optimize yield and quality. This study was carried out to investigate the effects of irrigation strategies and rootstocks on water relations and scion vigour of field-grown grapevines in Petrolina, Pernambuco state, Brazil. The cultivars used as scions are Moscato Canelli and Syrah, both grafted onto IAC 572 and 1103 Paulsen rootstocks. The following water treatments were used: deficit irrigation, with holding water after veraison; and partial root-zone drying, supplying (100% of crop evapotranspiration) of the water loss to only one side of the root system after fruit set, alternating the sides periodically (about 24 days). In general, all treatments had values of pre-dawn leaf water potential higher than -0.2 MPa, suggesting absence of water stress. The vine water status was more affected by rootstock type than irrigation strategies. Both cultivars grafted on IAC 572 had the highest values of midday leaf water potential and stem water potential, measured on non-transpiring leaves, which were bagged with both plastic sheet and aluminum foil at least 1 h before measurements. For both cultivars, the stomatal conductance (g s), transpiration (E) and leaf area index (LAI) were also more affected by roostsotck type than by irrigation strategies. The IAC 572 rootstock presented higher g s, E and LAI than the 1103 Paulsen. Differences in vegetative vigor of the scion grafted onto IAC 572 rootstocks were related to its higher leaf specific hydraulic conductance and deeper root system as compared to the 1103 Paulsen, which increased the water-extraction capability, resulting in a better vine water status.

OENO One ◽  
2014 ◽  
Vol 48 (2) ◽  
pp. 123 ◽  
Author(s):  
José Manuel Mirás-Avalos ◽  
Emiliano Trigo-Córdoba ◽  
Yolanda Bouzas-Cid

<p style="text-align: justify;"><strong>Aims</strong>: To evaluate the usefulness of predawn water potential (<strong>Ψ</strong><sub>pd</sub>) to assess the water status of Galician grapevine cultivars for irrigation purposes.</p><p style="text-align: justify;"><strong>Methods and results</strong>: Three Galician white grapevine cultivars (Albariño, Godello and Treixadura) were subjected to rain-fed and irrigation conditions during the 2013 growing season. Diurnal changes in leaf water potential (<strong>Ψ</strong><sub>l</sub>) were measured using a pressure chamber on days with high evapotranspiration demand. Stem water potential (<strong>Ψ</strong><sub>s</sub>) was measured at midday. <strong>Ψ</strong><sub>pd</sub> was not able to discriminate between treatments, whereas <strong>Ψ</strong><sub>l</sub> and <strong>Ψ</strong><sub>s</sub> at midday were able to detect significant differences in water status among plants.</p><p style="text-align: justify;"><strong>Conclusion</strong>: <strong>Ψ</strong><sub>pd</sub> was not useful to evaluate vine water status under the Galician climatic conditions. In contrast, both <strong>Ψ</strong><sub>l</sub> and <strong>Ψ</strong><sub>s</sub> were effective for detecting differences between treatments and can thus be used for irrigation management purposes.</p><p style="text-align: justify;"><strong>Significance and impact of the study</strong>: This is the first study evaluating water status of Galician grapevine cultivars. It also provides useful information about the strategy for its control through measurements of midday <strong>Ψ</strong>l or <strong>Ψ</strong>s.</p>


2002 ◽  
Vol 127 (3) ◽  
pp. 448-454 ◽  
Author(s):  
L.E. Williams ◽  
F.J. Araujo

A study was conducted to compare three measurements of determining water status of grapevines (Vitis vinifera L.) in the field. Predawn leaf water potential (ΨPD), midday leaf water potential (Ψl), and midday stem water potential (Ψstem) were measured on `Chardonnay' and `Cabernet Sauvignon' grapevines grown in Napa Valley, California late in the 1999 growing season. Both cultivars had been irrigated weekly at various fractions (0, 0.5, and 1.0 for `Chardonnay' and 0, 0.5, 0.75, and 1.5 for `Cabernet') of estimated vineyard evapotranspiration (ETc) from approximately anthesis up to the dates of measurements. Predawn water potential measurements were taken beginning at 0330 hr and completed before sunrise. Midday Ψl and Ψstem measurements were taken only between 1230 and 1330 hr. In addition, net CO2 assimilation rates (A) and stomatal conductance to water vapor (gs) were also measured at midday. Soil water content (SWC) was measured in the `Chardonnay' vineyard using a neutron probe. Values obtained for ΨPD, Ψl, and Ψstem in this study ranged from about -0.05 to -0.8, -0.7 to -1.8, and -0.5 to -1.6 MPa, respectively. All three measurements of vine water status were highly correlated with one another. Linear regression analysis of Ψl and Ψstem versus ΨPD resulted in r2 values of 0.88 and 0.85, respectively. A similar analysis of Ψl as a function of Ψstem resulted in an r2 of 0.92. In the `Chardonnay' vineyard, all three methods of estimating vine water status were significantly (P < 0.01) correlated with SWC and applied amounts of water. Lastly, ΨPD, Ψl, and Ψstem were all linearly correlated with measurements of A and gs at midday. Under the conditions of this study, ΨPD, Ψl, and Ψstem represent equally viable methods of assessing the water status of these grapevines. They were all correlated similarly with the amount of water in the soil profile and leaf gas exchange as well as with one another.


OENO One ◽  
2000 ◽  
Vol 34 (4) ◽  
pp. 169
Author(s):  
Xavier Choné ◽  
Olivier Trégoat ◽  
Cornelis Van Leeuwen ◽  
Denis Dubourdieu

<p style="text-align: justify;">Vine water status is an important factor in grape quality. High tannin and anthocyanin content in red grape berries are related to moderate vine water deficits. Hence, a simple and sensitive indicator is required to determine vine water status and especially water constraint. Pressure chamber allows a quick and easy to practice determination of water status in the vineyard. Three applications of pressure chamber are known: predawn leaf water potential (ΨB), leaf water potential (ΨF) and stem water potential (ΨT). Only ΨB and ΨF are widely used on vines. In this survey ΨB, ΨF, ΨT and transpiration flow were measured on mature leaves to determine non-irrigated vine water status in field grown vines during the growing season. In California as well as in France, stem Ψ was the most discriminating indicator for both moderate and severe water deficits. In every plot surveyed ΨT was much better correlated to leaf transpiration than ΨF. Moreover, ΨT revealed nascent water deficit earlier than ΨB did. Among the three application of pressure chamber, ΨT was the only one to indicate short term water deficit after a rainfall. Hence, ΨT appears to be a useful indicator for grapevine management in both non-irrigated and irrigated vineyards.</p>


1988 ◽  
Vol 36 (3) ◽  
pp. 239 ◽  
Author(s):  
J Whittington ◽  
R Sinclair

Mistletoes have frequently been found to transpire more rapidly than their hosts, and usually maintain a more negative water potential. Leaf water potential and diffusive conductance were monitored from the end of a dry summer (March) through a wet winter (to August) on the mistletoe Amyema miquelii (Lehm. ex Miq.) Tieghem and its host Eucalyptus fasciculosa F. Muell. The calculated transpiration rate of the mistletoe was greater than that of its host, but water potential data showed two unusual features. Firstly, the parasite pre-dawn water potential always remained lower than that of the host, regardless of the host's water status. Secondly, the parasite water potential during the day was on one occasion less negative than that of the host, i.e. a reverse gradient. Tissue water relations studies showed that A. miquelii leaves had more negative solute potential and a larger water capacitance than E. fasciculosa leaves. The unusual features of the seasonal data were explained in terms of a large haustorial resistance to water flow and hysteresis in the relationship between transpiration and water potential in the mistletoe leaf. This hysteresis was thought to be due to the contribution of stored leaf water to transpiration.


2013 ◽  
Vol 39 (6) ◽  
Author(s):  
M.A. Rahman ◽  
P. Stringer ◽  
A.R. Ennos

Evapotranspirational cooling from urban trees is an effective way of reducing the urban heat island. However, the appropriate planting design to maximize the cooling benefit of street trees has not been widely examined. The current study investigated the growth and physiology of a commonly planted urban tree, Pyrus calleryana, in Manchester, UK. Trees were planted in April 2010 using three standard planting techniques: in a small open pit, and in small or large closed pits with non-compacted load-bearing soils and sealed with permeable paving slabs. The growth rate, leaf area index, and stomatal conductance were monitored over the next three growing seasons, together with chlorophyll analysis and fluorescence and leaf water potential, allowing researchers to determine tree health, water status, and evapotranspirational cooling. Trees in the open pits grew twice as fast as those in small covered pits and 1.5 times as fast as trees in large covered pits. Having significantly higher canopy density, canopy spread, and stomatal conductivity, the trees in the open pits provided up to 1 kW of cooling, compared to around 350 and 650 W by the small and large covered pits, respectively. Phenological observations, chlorophyll fluorescence, total chlorophyll, and foliar nutrient content confirmed that the trees in open pits were healthier. However, the leaf water potential of trees in the covered pits was less negative, showing that they were not suffering from water stress. Instead, limited aeration probably affected their root respiration and nutrient uptake, impairing their growth and physiological performance.


OENO One ◽  
2004 ◽  
Vol 38 (1) ◽  
pp. 21
Author(s):  
Jesús Yuste ◽  
I. Gutiérrez ◽  
José Antonio Rubio ◽  
María del Valle Alburquerque

<p style="text-align: justify;">Attempts have been made to determine the water status of vineyards using different methods, with variable results according to the different authors. Therefore, various methods have been used to estimate soil humidity (TDR, tensiometer, neutron probe, etc.) and the water status of the plant (dendrometer, porometer, leaf water potential, xylem water potential, etc.). The leaf water potential measured with leaf and «bagged» leaf, which are subjected to comparison in this report, are two useful and simple methods for finding out the water status of the vines, based on the use of a simple instrument that is acceptably available in economic terms, the pressure chamber.</p><p style="text-align: justify;">The trial was performed at an experimental Tempranillo vineyard in which the main source of variation was the watering regime (no irrigation, 20 % ETo irrigation, 40 % ETo irrigation) and in which a change in planting density was also included (low, 2.7x1.4 m; high, 2.2x1.5 m). The resulting experimental treatments were: B00 (low density and no irrigation), B20 (low density and 20%ETo), H20 (high density and 20%ETo) and H40 (high density and 40 % ETo). The total amount of water applied to the treatments with the lesser irrigation rate (0.2 ETo mm) was equal to 61 mm and to the treatment with the higher irrigation rate (0.4 ETo mm) was equal to 122 mm, up to the week of August 29, 2002. The measurements of Yf were performed before dawn (aa) on June 14, at solar noon (12:00 p.m.) on July 19 and 26 and on August 29, 2002, on adult leaves located in the middle zone of the shoot, above the height of the clusters, on the eastern face of the trellised vines. Yx was measured at 6:00 a.m. on June 14 and at solar noon (12:00 p.m.) on July 19 and 26 and on August 29, 2002, also on adult leaves in the middle zone of the shoot, above the zone of the clusters, leaves located on the western face of the trellised vines and therefore shaded, and covered at least one hour prior to taking the measurement.</p><p style="text-align: justify;">The relationship between the water potential of the leaf and that of the «bagged» leaf has proven to draw closer as the cycle has advanced and the vines have been more stressed, in such a way that the best relationship between the two indicators was obtained in the measurement performed at the end of the month of August. When the water differences are very notable, both indicators are able to show the water status of the vineyard expected in accordance with the rate of irrigation applied.</p><p style="text-align: justify;">The measurement of water potential of the leaf has been easier to take, because it is not necessary to cover the leaves prior to taking the measurement (except in the measurement before dawn, in which case one must be in the vineyard at an unpleasant hour). However, using the potential of the xylem it has been possible to make better observations of the differences between treatments, when these differences are not very important.</p>


2011 ◽  
Vol 47 (1) ◽  
pp. 27-51 ◽  
Author(s):  
M. K. V. CARR

SUMMARYThe results of research on the water relations and irrigation needs of coconut are collated and summarized in an attempt to link fundamental studies on crop physiology to drought mitigation and irrigation practices. Background information on the centres of origin and production of coconut and on crop development processes is followed by reviews of plant water relations, crop water use and water productivity, including drought mitigation. The majority of the recent research published in the international literature has been conducted in Brazil, Kerala (South India) and Sri Lanka, and by CIRAD (France) in association with local research organizations in a number of countries, including the Ivory Coast. The unique vegetative structure of the palm (stem and leaves) together with the long interval between flower initiation and the harvesting of the mature fruit (44 months) mean that causal links between environmental factors (especially water) are difficult to establish. The stomata play an important role in controlling water loss, whilst the leaf water potential is a sensitive indicator of plant water status. Both stomatal conductance and leaf water potential are negatively correlated with the saturation deficit of the air. Although roots extend to depths >2 m and laterally >3 m, the density of roots is greatest in the top 0–1.0 m soil, and laterally within 1.0–1.5 m of the trunk. In general, dwarf cultivars are more susceptible to drought than tall ones. Methods of screening for drought tolerance based on physiological traits have been proposed. The best estimates of the actual water use (ETc) of mature palms indicate representative rates of about 3 mm d−1. Reported values for the crop coefficient (Kc) are variable but suggest that 0.7 is a reasonable estimate. Although the sensitivity of coconut to drought is well recognized, there is a limited amount of reliable data on actual yield responses to irrigation although annual yield increases (50%) of 20–40 nuts palm−1 (4–12 kg copra, cultivar dependent) have been reported. These are only realized in the third and subsequent years after the introduction of irrigation applied at a rate equivalent to about 2 mm d−1 (or 100 l palm−1 d−1) at intervals of up to one week. Irrigation increases female flower production and reduces premature nut fall. Basin irrigation, micro-sprinklers and drip irrigation are all suitable methods of applying water. Recommended methods of drought mitigation include the burial of husks in trenches adjacent to the plant, mulching and the application of common salt (chloride ions). An international approach to addressing the need for more information on water productivity is recommended.


2014 ◽  
Vol 1 (1) ◽  
pp. 1013-1072
Author(s):  
D. R. Smart ◽  
S. Cosby Hess ◽  
R. Plant ◽  
O. Feihn ◽  
H. Heymann ◽  
...  

Abstract. The geoscience component of terroir in wine grape production continues to be criticized for its quasi-mystical nature, and lack of testable hypotheses. Nonetheless, recent relational investigations are emerging and most involve water availability as captured by available water capacity (AWC, texture) or plant available water (PAW) in the root zone of soil as being a key factor. The second finding emerging may be that the degree of microscale variability in PAW and other soil factors at the vineyard scale renders larger regional characterizations questionable. Cimatic variables like temperature are well mixed, and its influence on wine characteristic is fairly well established. The influence of mesogeology on mesoclimate factors has also been characterized to some extent. To test the hypothesis that vine water status mirrors soil water availability, and controls fruit sensory and chemical properties at the vineyard scale we examined such variables in a iconic, selectively harvested premium winegrape vineyard in the Napa Valley of California during 2007 and 2008 growing seasons. Geo-referenced data vines remained as individual study units throughout data gathering and analysis. Cartographic exercises using geographic information systems (GIS) were used to vizualize geospatial variation in soil and vine properties. Highly significant correlations (P < 0.01) emerged for pre-dawn leaf water potential (ΨPD), mid-day leaf water potential (ΨL) and PAW, with berry size, berry weight, pruning weights (canopy size) and soluble solids content (°Brix). Areas yielding grapes with perceived higher quality had vines with (1) lower leaf water potential (LWP) both pre-dawn and mid-day, (2) smaller berry diameter and weight, (3) lower pruning weights, and (4) higher °Brix. A trained sensory panel found grapes from the more water-stressed vines had significantly sweeter and softer pulp, absence of vegetal character, and browner and crunchier seeds. Metabolomic analysis of the grape skins showed significant differences in accumulation of amino acids and organic acids. Data vines were categorized as non-stressed (ΨPD ≥ −7.9 bars and ΨL ≥ −14.9 bars) and stressed (ΨPD ≤ −8.0 bars and ΨL ≤ −15.0 bars) and subjected to analysis of variance. Significant separation emerged for vines categorized as non-stressed versus stressed at véraison, which correlated to the areas described as producing higher and lower quality fruit. This report does not advocate the use of stress levels herein reported. The vineyard was planted to a vigorous, deep rooted rootstock (V. rupestris cv. St. George), and from years of management is known to be able to withstand stress levels of the magnitude we observed. Nonetheless, the results may suggest there is not a linear relationship between physiological water stress and grape sensory characteristics, but rather the presence of an inflection point controlling grape composition as well as physiological development.


Sign in / Sign up

Export Citation Format

Share Document