scholarly journals Partial purification and properties of cellulase-free alkaline xylanase produced by Rhizopus stolonifer in solid-state fermentation

2005 ◽  
Vol 48 (3) ◽  
pp. 327-333 ◽  
Author(s):  
Antonio José Goulart ◽  
Eleonora Cano Carmona ◽  
Rubens Monti

Rhizopus stolonifer was cultivated in wheat bran to produce a cellulase-free alkaline xylanase. The purified enzyme obtained after molecular exclusion chromatography in Sephacryl S-200 HR showed optimum temperature as 45º C and hydrolysis pHs optima as pH 6.0 and 9.0. Xylanase presented higher Vmax at pH 9.0 (0.87 µmol/mg protein) than at pH 6.0 and minor Km at pH 6.0 (7.42 mg/mL) than at pH 9.0.

Author(s):  
M. Fadel ◽  
Sawsan AbdEl-Halim ◽  
Hayat Sharada ◽  
Ahmed Yehia ◽  
Mayar Ammar

Filamentous fungi have been widely utilized in production of enzymes which have many industrial applications. In this study, twenty five local fungal isolates, belonging to Aspergillus sp., Trichoderma sp. and Penicillium sp., were screened under solid state fermentation conditions (SSF) for the production of α-amylase, glucoamylase and cellulase. Asperigillus oryzae F-923, cultivated on wheat bran, was the most promising isolate for production of the target enzymes under this study. Physical parameters of moisture content, pH, temperature and incubation time, optimized were 1:2(w/v), 5.5, 28°C and 72 hr, respectively. The production of enzymes was enhanced when ammonium sulfate was supplemented as a nitrogen source to wheat bran. The production of α-amylase and glucoamylase was also enhanced when 10% (w/w) soluble starch was added as a carbon source to wheat bran. However xylose supplementation at 10% (w/w) was observed to be best for cellulase production. Tap water was found to be efficient for enzymes' extraction from the fermentation medium. Three successive extractions were needed to obtain the produced enzymes from the fermented substrate. Characterization of the produced enzymes revealed that, the optimum temperature for α-amylase and glucoamylase was 60°C, while 50°C was the optimum temperature for cellulase activity. Isopropanol 1:1(v/v) was proved to be more suitable for partial purification of enzymes. Following partial purification of enzymes of glucoamylase, α-amylase and cellulase increased to 10.8, 11.8 and 11.4 folds, respectively.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Romana Tabassum ◽  
Shazia Khaliq ◽  
Muhammad Ibrahim Rajoka ◽  
Foster Agblevor

The thermodynamic and kinetic properties of solids state raw starch digesting alpha amylase from newly isolated Bacillus licheniformis RT7PE1 strain were studied. The kinetic values Qp, Yp/s, Yp/X, and qp were proved to be best with 15% wheat bran. The molecular weight of purified enzyme was 112 kDa. The apparent Km and Vmax values for starch were 3.4 mg mL−1 and 19.5 IU mg−1 protein, respectively. The optimum temperature and pH for α-amylase were 55°C, 9.8. The half-life of enzyme at 95°C was 17h. The activation and denaturation activation energies were 45.2 and 41.2 kJ mol−1, respectively. Both enthalpies (ΔH∗) and entropies of activation (ΔS∗) for denaturation of α-amylase were lower than those reported for other thermostable α-amylases.


Author(s):  
Laxmikant R. Patil ◽  
Anil R. Shet ◽  
Sharanappa Achappa ◽  
Shivalingsarj V. Desai ◽  
Veeranna S. Hombalimath ◽  
...  

Xylanases are enzymes that convert xylan into xylose, xylobiose, and xylotriose. The present study deals with the production and optimization of xylanase through Solid-State Fermentation (SSF) using different agricultural wastes by   Aspergillus spp. The Plackett Burman (PB) design was used to screen significant media components affecting the xylanase production. The carbon sources screened were wheat bran, rice bran, sugarcane bagasse, corn cob, and orange peel. The nitrogen sources screened were yeast extract, peptone, (NH4)2SO4, Na2NO3, and urea. Also, nine different salts such as KCl, MgSO4, Na2HPO4, CaCl2, FeSO4, ZnSO4, Na2CO3, KH2PO4, and NaH2PO4 which act as trace elements were screened. The results showed that wheat bran, yeast extract, Na2NO3 and KCl are the significant factors that affect xylanase production. A 33 Full Factorial Design (FFD) was performed to optimize the significant media components (wheat bran, KCl, yeast extract) obtained from PB design using Response Surface Methodology (RSM). Statistical analysis of results showed that wheat bran, KCl, yeast extract, and interaction between wheat bran and yeast extract were found to be significant. The optimum concentration of wheat bran, KCl, yeast extract was 8 g/L, 0.1 g/L and 3 g/L. The Partial purification of xylanase was carried out using ammonium salt precipitation and dialysis. Gel filtration chromatography was performed to optimize the elution time, which was found to be 6 minutes. Application of xylanase in orange juice clarification was studied at 40 °C, 50 °C, and 60 °C. The optimum temperature obtained was 60 ºC.


2020 ◽  
pp. 103159
Author(s):  
Sonja Jakovetić Tanasković ◽  
Nataša Šekuljica ◽  
Jelena Jovanović ◽  
Ivana Gazikalović ◽  
Sanja Grbavčić ◽  
...  

2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Hamid Mukhtar ◽  
Ikramul Haq

The present study describes the screening of different agroindustrial byproducts for enhanced production of alkaline protease by a wild and EMS induced mutant strain ofBacillus subtilisIH-72EMS8. During submerged fermentation, different agro-industrial byproducts were tested which include defatted seed meals of rape, guar, sunflower, gluten, cotton, soybean, and gram. In addition to these meals, rice bran, wheat bran, and wheat flour were also evaluated for protease production. Of all the byproducts tested, soybean meal at a concentration of 20 g/L gave maximum production of the enzyme, that is, 5.74  ±  0.26 U/mL from wild and 11.28  ±  0.45 U/mL from mutant strain, during submerged fermentation. Different mesh sizes (coarse, medium, and fine) of the soybean meal were also evaluated, and a finely ground soybean meal (fine mesh) was found to be the best. In addition to the defatted seed meals, their alkali extracts were also tested for the production of alkaline protease byBacillus subtilis, but these were proved nonsignificant for enhanced production of the enzyme. The production of the enzyme was also studied in solid state fermentation, and different agro-industrial byproducts were also evaluated for enzyme production. Wheat bran partially replaced with guar meal was found as the best substrate for maximum enzyme production under solid state fermentation conditions.


2004 ◽  
Vol 47 (5) ◽  
pp. 813-819 ◽  
Author(s):  
Natalia Martin ◽  
Simone Regina de Souza ◽  
Roberto da Silva ◽  
Eleni Gomes

Pectin lyase and polygalacturonase production by newly isolated fungal strains was carried out in solid-state fermentation. Moniliella SB9 and Penicillium sp EGC5 produced polygalcturonase (PG) and pectin lyase (PL) on mixture of orange bagasse, sugar cane bagasse and wheat bran as substrate. PG and PL produced by Moniliella presented optimum activity at pH 4.5 and 10.0 and at 55 and 45°C, respectively, while these enzymes from Penicillium sp presented optimum activity at pH 4.5-5.0 and 9.0 and 40°C, respectively.


Sign in / Sign up

Export Citation Format

Share Document