scholarly journals Chitosanase production by Paenibacillus ehimensis and its application for chitosan hydrolysis

2010 ◽  
Vol 53 (6) ◽  
pp. 1461-1468 ◽  
Author(s):  
Maria Giovana Binder Pagnoncelli ◽  
Nathália Kelly de Araújo ◽  
Nayane Macêdo Portela da Silva ◽  
Cristiane Fernandes de Assis ◽  
Sueli Rodrigues ◽  
...  

The chitosanase production by Paenibacillus ehimensis was studied in submerged cultures and the chitosan hydrolysis was evaluated by using these enzymes without purification. The bacterium produced inducibles enzymes after 12 h of growth in a culture medium containing 0.2% (w/v) of soluble chitosan as carbon source. The enzyme production was strongly repressed by the presence of glucose. The production started as soon as the available sugars finished in the culture medium. The maximum level of chitosanase activity was 500 U.L-1 at 36°C after 36 h incubation. The crude enzyme was optimally active at pH 6.0 and 55°C and in these conditions, the enzyme presented good stability (6 days). The enzyme without purification was used to hydrolyze the chitosan which resulted chitooligosaccharides between 20 and 30 min of reaction.

2008 ◽  
Vol 51 (2) ◽  
pp. 399-404 ◽  
Author(s):  
Andréa M. Costa ◽  
Wanessa X. Ribeiro ◽  
Elaine Kato ◽  
Antonio Roberto G. Monteiro ◽  
Rosane Marina Peralta

The production of tannase by Aspergillus tamarii was studied in submerged cultures. The fungus produced an extracellular tannase after two days of growth in mineral medium containing tannic acid, gallic acid and methyl gallate as carbon source. The best result was obtained using gallic acid as inducer (20.6 U/ml). The production of enzyme was strongly repressed by the presence of glucose. Crude enzyme was optimally active at pH 5.0 and 30º C. The enzyme was stable in a large range of pH and up to the temperature of 45º C.


2021 ◽  
Vol 7 (3) ◽  
pp. 229
Author(s):  
Bettina Volford ◽  
Mónika Varga ◽  
András Szekeres ◽  
Alexandra Kotogán ◽  
Gábor Nagy ◽  
...  

β-Galactosidases of Mucoromycota are rarely studied, although this group of filamentous fungi is an excellent source of many industrial enzymes. In this study, 99 isolates from the genera Lichtheimia, Mortierella, Mucor, Rhizomucor, Rhizopus and Umbelopsis, were screened for their β-galactosidase activity using a chromogenic agar approach. Ten isolates from the best producers were selected, and the activity was further investigated in submerged (SmF) and solid-state (SSF) fermentation systems containing lactose and/or wheat bran substrates as enzyme production inducers. Wheat bran proved to be efficient for the enzyme production under both SmF and SSF conditions, giving maximum specific activity yields from 32 to 12,064 U/mg protein and from 783 to 22,720 U/mg protein, respectively. Oligosaccharide synthesis tests revealed the suitability of crude β-galactosidases from Lichtheimia ramosa Szeged Microbiological Collection (SZMC) 11360 and Rhizomucor pusillus SZMC 11025 to catalyze transgalactosylation reactions. In addition, the crude enzyme extracts had transfructosylation activity, resulting in the formation of fructo-oligosaccharide molecules in a sucrose-containing environment. The maximal oligosaccharide concentration varied between 0.0158 and 2.236 g/L depending on the crude enzyme and the initial material. Some oligosaccharide-enriched mixtures supported the growth of probiotics, indicating the potential of the studied enzyme extracts in future prebiotic synthesis processes.


2001 ◽  
Vol 56 (11-12) ◽  
pp. 1022-1028 ◽  
Author(s):  
Kristina Uzunova ◽  
Anna Vassileva ◽  
Margarita Kambourova ◽  
Viara Ivanova ◽  
Dimitrina Spasova ◽  
...  

Abstract Enzyme production of newly isolated thermophilic inulin-degrading Bacillus sp. 11 strain was studied by batch cultivation in a fermentor. The achieved inulinase and invertase activi­ ties after a short growth time (4.25 h) were similar or higher compared to those reported for other mesophilic aerobic or anaerobic thermophilic bacterial producers and yeasts. The investigated enzyme belonged to the exo-type inulinases and splitted-off inulin, sucrose and raffinose. It could be used at temperatures above 65 °C and pH range 5.5-7.5. The obtained crude enzyme preparation possessed high thermostability. The residual inulinase and inver­ tase activities were 92-98% after pretreatment at 65 °C for 60 min in the presence of substrate inulin.


2021 ◽  
Author(s):  
Oladipo Olaniyi

Abstract The goal of this present investigation was to mutagenize Bacillus subtilis with Ethyl Methyl Sulphonate (EMS), screen the mutants for cellulase production and evaluate the influence of different glucose concentrations on their cellulase production potentials. The wild type B. subtilis was treated with 20, 40, 60 and 80 µl of EMS and the mutants generated were screened for cellulase production in minimal salt medium containing carboxylmethylcellulose (CMC) as the carbon source. Quantitatively, cellulase activity and protein contents were determined by dinitrosalicylic acid and Lowry methods respectively. Seven mutants were developed from each of the EMS concentration bringing the total to twenty-eight from all the concentrations. Approximately 14 and 57% of the mutants developed from 40 and 60µl of EMS had higher cellulase activities than the wild type, while none of the mutants developed from 20 and 80 µl of EMS had better activities than the wild type. The supplementation of 0.2, 0.5, 1.0 and 1.5% glucose in enzyme production medium caused approximately 100, 14, 29 and 14% cellulase repression respectively in the mutants developed from 60µl EMS. Mutants MSSS02 and MSSS05 were considered as catabolite insensitive mutants because their cellulase production were enhanced in comparison to wild type.


2021 ◽  
Vol 36 ◽  
pp. 05003
Author(s):  
Nguyen Van Zhang ◽  
Nguyen Thi Thu ◽  
Vu Thi Linh ◽  
V.V. Pylnev ◽  
M.I. Popchenko

This work presents the experimental study results of the influence of the culture medium on the ability to IAA synthesis of three endophytic strains TH10R, TH11T, and TH13T from roots of Ipomoea pes-caprae. Three investigated strains give the highest IAA concentration after 96 h of cultivation. A significant increase in IAA biosynthesis was obtained by cultivating the TH10R strain in a medium containing lactose or starch as a carbon source and NH4Cl or KNO3 as a nitrogen source. The TH11T strain produces the maximum amount of IAA, using glucose or xylose and KNO3 or NH4NO3 as carbon and nitrogen sources, respectively. Sucrose is a suitable carbon source for the TH13T strain; on a sucrose-containing medium, the TH13T strain produces the highest IAA amount. The most active strain is TH10R, identified as Bacillus mycoides and named Bacillus mycoides TH10R.


Hoehnea ◽  
2018 ◽  
Vol 45 (1) ◽  
pp. 134-142 ◽  
Author(s):  
Flaviane Lopes Ferreira ◽  
Cesar Barretta Dall'Antonia ◽  
Emerson Andrade Shiga ◽  
Larissa Juliani Alvim ◽  
Rosemeire Aparecida Bom Pessoni

ABSTRACT The aim of the present work was to assess the enzymatic activity of six strains of filamentous fungi grown in liquid media containing 1% sugarcane bagasse as the sole carbon source. All fungal strains were able to use this agro-industrial residue, producing various types of enzymes, such as cellulases, xylanases, amylases, pectinases, and laccases. However, Aspergillus japonicus Saito was the most efficient producer, showing the highest enzymatic activity for laccase (395.73 U L-1), endo-β-1,4-xylanase (3.55 U mL-1) and β-xylosidase (9.74 U mL-1) at seven, fourteen and twenty-one days in culture, respectively. Furthermore, the endo-β-1,4-xylanases and β-xylosidases of A. japonicus showed maximum activity at 50°C, and pH 5.5 and pH 3.5-4.5, respectively. Thus, these results indicate that A. japonicus has a great biotechnological potential for the production of these enzymes using sugarcane bagasse as the sole source of carbon.


2020 ◽  
Vol 70 (1) ◽  
Author(s):  
Elisa Steiner ◽  
Rosa Margesin

Abstract Purpose To evaluate the production of a cold-active CMCase (endoglucanase) by Bacillus mycoides AR20-61 isolated from Alpine forest soil and to characterize the crude enzyme. Methods After studying the effect of cultivation parameters (medium composition, temperature, NaCl concentration, pH) on bacterial growth and enzyme production, the crude enzyme was characterized with regard to the effect of pH, temperature, and inhibitors on enzyme activity and stability. Result Optimum growth and enzyme production occurred at 20–25 °C, pH 7, and 1–1.5% (w/v) CMC. Despite high biomass production over the whole growth temperature range (10–35 °C), enzyme production was low at 10 and 35 °C. CMC concentration had a minor effect on growth, independent of the growth temperature, but a significant effect on CMCase production at temperatures ≥ 20 °C. The crude enzyme was active over a broad temperature range (0–60 °C); the apparent optimum temperature for activity was at 40–50 °C. The cultivation temperature influenced the effect of temperature on enzyme activity and stability. A significantly higher thermosensitivity of the enzyme produced at a cultivation temperature of 10 °C compared to that produced at 25 °C was noted at 50 and 65 °C. The enzyme was highly active over a pH range of 4–6 and showed optimum activity at pH 5. No activity was lost after 60 min of incubation at 30 °C and pH 4–9. The CMCase was resistant against a number of monovalent and divalent metal ions, metal-chelating agents, and phenol. Conclusion The CMCase produced by the studied strain is characterized by high activities in the low temperature range (down to 0 °C) and acidic pH range, high stability over a broad pH range, and high resistance against a number of effectors. Our results also demonstrate the different, independent roles of temperature in bacterial growth, enzyme production, nutrient requirements during enzyme production, and enzyme characteristics regarding thermosensitivity, which has not yet been described for cellulases.


Metals ◽  
2019 ◽  
Vol 9 (5) ◽  
pp. 521 ◽  
Author(s):  
Rosalba Argumedo-Delira ◽  
Mario J. Gómez-Martínez ◽  
Brenda Joan Soto

Hydrometallurgical and pyrometallurgical processes to recover gold (Au) from cell-phone printed circuit boards (PCBs) have the disadvantage of generating corrosive residues and consuming a large amount of energy. Therefore, it is necessary to look for biological processes that have low energy consumption and are friendly to the environment. Among the biological alternatives for the recovery of Au from PCB is the use of cyanogenic bacteria and filamentous fungi in cultures with agitation. Considering that it is important to explore the response of microorganisms in cultures without agitation to reduce energy expenditure in the recovery of metals from PCB, the present investigation evaluated the capacity of Aspergillus niger MXPE6 and a fungal consortium to induce Au bioleaching from PCB in a culture medium with glucose as a carbon source and without agitation (pH 4.5). The results indicate that the treatments with PCB inoculated with the fungal consortium showed a considerable decrease in pH (2.8) in comparison with the treatments inoculated with A. niger MXPE6 (4.0). The fungal consortium showed a significantly higher Au bioleaching (56%) than A. niger MXPE6 (17%). Finally, the use of fungal consortia grown without agitation could be an alternative to recover metals from PCB, saving energy and material resources.


Sign in / Sign up

Export Citation Format

Share Document