scholarly journals Surface topography of hydroxyapatite affects ROS17/2.8 cells response

2002 ◽  
Vol 16 (3) ◽  
pp. 209-215 ◽  
Author(s):  
Adalberto Luiz Rosa ◽  
Márcio Mateus Beloti ◽  
Richard van Noort ◽  
Paul Vincent Hatton ◽  
Anne Jane Devlin

Hydroxyapatite (HA) has been used in orthopedic, dental, and maxillofacial surgery as a bone substitute. The aim of this investigation was to study the effect of surface topography produced by the presence of microporosity on cell response, evaluating: cell attachment, cell morphology, cell proliferation, total protein content, and alkaline phosphatase (ALP) activity. HA discs with different percentages of microporosity (< 5%, 15%, and 30%) were confected by means of the combination of uniaxial powder pressing and different sintering conditions. ROS17/2.8 cells were cultured on HA discs. For the evaluation of attachment, cells were cultured for two hours. Cell morphology was evaluated after seven days. After seven and fourteen days, cell proliferation, total protein content, and ALP activity were measured. Data were compared by means of ANOVA and Duncan’s multiple range test, when appropriate. Cell attachment (p = 0.11) and total protein content (p = 0.31) were not affected by surface topography. Proliferation after 7 and 14 days (p = 0.0007 and p = 0.003, respectively), and ALP activity (p = 0.0007) were both significantly decreased by the most irregular surface (HA30). These results suggest that initial cell events were not affected by surface topography, while surfaces with more regular topography, as those present in HA with 15% or less of microporosity, favored intermediary and final events such as cell proliferation and ALP activity.

2005 ◽  
Vol 16 (2) ◽  
pp. 156-161 ◽  
Author(s):  
Márcio Mateus Beloti ◽  
Adalberto Luiz Rosa

Dexamethasone (Dex) has been shown to induce osteoblast differentiation in several cell culture systems. This study investigated the effect of continuous and discontinuous treatment with Dex on osteoblast differentiation of human bone marrow stromal cells (BMSC). Primary culture and first passage were cultured in media with or without Dex 10-7 M. During the culture period, cells were incubated at 37ºC in humidified atmosphere of 5% CO2 and 95% air. At 7, 14, and 21 days, cell proliferation, cell viability, total protein content, alkaline phosphatase (ALP) activity and bone-like formation were evaluated. Data were compared by two-way analysis of variance. Dex did not affect cell viability and total protein content, but reduced cell number. ALP activity and bone-like formation increased when only first passage or both primary culture and first passage were treated with Dex, in comparison to the groups that did not have contact with Dex after first passage. The results of this study indicate that, for human BMSC, continuous presence of Dex did not appear to be required for development of the osteoblast phenotype, but Dex must be present after first passage to allow osteoblast differentiation expressed by reduced cell proliferation and increased ALP activity and bone-like formation.


2005 ◽  
Vol 16 (3) ◽  
pp. 225-230 ◽  
Author(s):  
Adalberto Luiz Rosa ◽  
Márcio Mateus Beloti

Bone marrow cells have been used for testing biocompatibility of bone substitute materials that would be applied in maxillofacial and orthopedic surgeries. However, it remains unclear whether cells in serial subcultures retain the ability to differentiate into osteoblasts. The purpose of this study was to compare the development of osteoblast phenotype of serially passaged cells from human bone marrow. Cells from first to third passage were cultured (2x10(4) cells/well) in supplemented culture medium. Cells were incubated at 37ºC in a humidified atmosphere of 5% CO2 and 95% air. Cell attachment was assessed at 4 and 24 h. At 7, 14 and 21 days, cell proliferation, cell viability, total protein content and alkaline phosphatase (ALP) activity were evaluated. Bone-like formation was evaluated at 14 and 21 days. Data were compared by two-way ANOVA and Duncan's multiple range test. Cell attachment, cell viability and total protein content were not affected by serial subcultures. However, serial subcultures did interfered negatively with osteoblast differentiation as shown by osteoblast parameters observed in second and third subcultures, such as continuous cell proliferation, lower ALP activity and bone-like formation in comparison to first subculture. Therefore, it is important to evaluate cell ability to growth and differentiate before selecting the cell population for studies that investigate the biocompatibility of materials to replace bone tissue.


2003 ◽  
Vol 14 (1) ◽  
pp. 16-21 ◽  
Author(s):  
Adalberto Luiz Rosa ◽  
Márcio Mateus Beloti

There is general agreement that rough surfaces improve both biologic and biomechanical responses to titanium (Ti) implants. The aim of this investigation was to study the effect of Ti surface roughness on the response of human bone marrow cell culture evaluating: cell attachment, cell proliferation, total protein content, alkaline phosphatase (ALP) activity, and bone-like nodule formation. Cells were cultured on commercially pure titanium (cpTi) discs with four different average roughnesses (Ra). For attachment evaluation, cells were cultured for 4 h. After 21 days, cell proliferation, total protein content, and ALP activity were evaluated. For bone-like nodule formation, cells were cultured for 28 days. Data were compared by ANOVA and Duncan's multiple range test. Cell attachment was not affected by surface roughness. For cells cultured on Ti with Ra ranging from 0.80 µm to 1.90 µm, proliferation was reduced while total protein content, and ALP activity were increased. There was a non-statistically significant increase of bone-like nodule formation on a surface with Ra near 0.80 µm. These results suggest that for Ti an Ra ranging from 0.80 µm to 1.90 µm would optimize both intermediary and final cellular responses but not affect the initial response, and a smoother surface would not favor any evaluated response.


2005 ◽  
Vol 33 (3) ◽  
pp. 207-213 ◽  
Author(s):  
Paul J. Dierickx

In our previously described Hep G2/24-hour/total protein assay, protein levels were measured by using the Lowry method. This assay was the best acute in vitro assay for the prediction of human toxicity within the Multicentre Evaluation of In Vitro Cytotoxicity (MEIC) study. In order to increase the MEIC data-base with a wider range of chemicals, we were interested in introducing the more practical 3-(4-carboxybenzoyl)-quinoline-2-carboxaldehyde (CBQCA) method for the quantification of the total protein content. Therefore, we investigated whether the same good results for the prediction of acute human toxicity would be obtained with the CBQCA method. The cells were treated for 24 hours, then cytotoxicity was determined by measuring the total protein content with CBQCA. The results were quantified by using the PI50c: the concentration (in mM) of test compound required to reduce the total protein content measured with the CBQCA-method by 50% as compared to the control cells. The results were compared with the PI50, the corresponding value when the Lowry method was used. A relatively low correlation was observed between PI50 and PI50c, reflecting the large and unexpected, differences when using the two protein assays. However, when comparing the log PI50c with the human toxicity, a correlation coefficient of r2 = 0.761 ( n = 44) was obtained for exactly the same series of MEIC chemicals. This value is clearly higher than that for the Lowry method ( r2 = 0.695). Compared to the Lowry method originally used, the Hep G2/24-hour/CBQCA total protein assay has the additional important advantage that it can be very easily adapted for large-scale analyses with robotic systems, including the on-line calculation of the results.


Author(s):  
J.G. Thompson ◽  
A.N.M. Sherman ◽  
N.W. Allen ◽  
L.T. McGowan ◽  
H.R. Tervit

1979 ◽  
Vol 236 (2) ◽  
pp. H268-H272 ◽  
Author(s):  
R. C. Hickson ◽  
G. T. Hammons ◽  
J. O. Holoszy

Adult female rats were exercised by daily swimming. All the increase in heart weight induced by the exercise occurred within 14 days and averaged 30%. The half times of the increases in heart weight and total protein content were about 4.5 days, whereas that of cytochrome c, which was used as a mitochondrial marker, was 6.5 days. The total amounts of DNA and of hydroxyproline in the heart, which were used to evaluate the degree of connective tissue hyperplasia, increased only slightly (8% and 10%, respectively). Other animals were subjected to the same swimming program for 21 days. Groups of rats were killed at various time intervals after stopping exercise. Heart weight, total protein content, and total cytochrome c content decreased rapidly initially, with 60% of the total regression of hypertrophy occurring during the first week. Thereafter, heart weight fell more gradually toward the sedentary control value. The hydroxyproline content of the heart, which was increased 10%, did not decrease during the regression of the hypertrophy.


Foods ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 2431
Author(s):  
Nicola Landi ◽  
Sara Ragucci ◽  
Antimo Di Maro

Cow, sheep and goat raw milk raised in Ailano and Valle Agricola territories (‘Alto Casertano’, Italy) were characterized (raw proteins, free and total amino acids content) to assess milk quality. Raw milk with the highest total protein content is sheep milk followed by goat and cow milk from both localities. Total amino acid content in cow, goat and sheep raw milk is 4.58, 4.81 and 6.62 g per 100 g, respectively, in which the most abundant amino acid is glutamic acid (~20.36 g per 100 g of proteins). Vice versa, the free amino acids content characteristic profiles are different for each species. In particular, the most abundant free amino acid in cow, sheep and goat raw milk is glutamic acid (9.07 mg per 100 g), tyrosine (4.72 mg per 100 g) and glycine (4.54 mg per 100 g), respectively. In addition, goat raw milk is a source of taurine (14.92 mg per 100 g), retrieved in low amount in cow (1.38 mg per 100 g) and sheep (2.10 mg per 100 g) raw milk. Overall, raw milk from ‘Alto Casertano’ show a high total protein content and are a good source of essential amino acids.


Author(s):  
L. Bahdanava ◽  
A. Podryabinkina ◽  
I. Bahdanau ◽  
T. Savelyeva

The article presents the results of research to study seasonal changes in the content of total protein, casein and whey proteins in raw milk and to analyze their impact on cheese yield. It was determined that the lowest casein content in raw milk (18% lower than the national average) was observed in October and March. The linear dependence of the cheese yield on both the total protein content and casein content was established.


Sign in / Sign up

Export Citation Format

Share Document