scholarly journals Trisomy 21 and Down syndrome: a short review

2008 ◽  
Vol 68 (2) ◽  
pp. 447-452 ◽  
Author(s):  
CA. Sommer ◽  
F. Henrique-Silva

Even though the molecular mechanisms underlying the Down syndrome (DS) phenotypes remain obscure, the characterization of the genes and conserved non-genic sequences of HSA21 together with large-scale gene expression studies in DS tissues are enhancing our understanding of this complex disorder. Also, mouse models of DS provide invaluable tools to correlate genes or chromosome segments to specific phenotypes. Here we discuss the possible contribution of HSA21 genes to DS and data from global gene expression studies of trisomic samples.

2011 ◽  
Vol 2 (2) ◽  
Author(s):  
Monojit Debnath ◽  
Karen Doyle ◽  
Camilla Langan ◽  
Colm McDonald ◽  
Brian Leonard ◽  
...  

AbstractPsychiatric disorders are common and complex and their precise biological underpinnings remain elusive. Multiple epidemiological, molecular, genetic and gene expression studies suggest that immune system dysfunction may contribute to the risk for developing psychiatric disorders including schizophrenia, bipolar disorder, and major depressive disorder. However, the precise mechanisms by which inflammation-related events confer such risk are unclear. In this review, we examine the peripheral and central evidence for inflammation in psychiatric disorders and the potential molecular mechanisms implicated including inhibition of neurogenesis, apoptosis, the HPA-axis, the role of brain-derived neurotrophic factor and the interplay between the glutamatergic, dopaminergic and serotonergic neurotransmitter systems.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Julie C. Lauterborn ◽  
Pietro Scaduto ◽  
Conor D. Cox ◽  
Anton Schulmann ◽  
Gary Lynch ◽  
...  

AbstractSynaptic disturbances in excitatory to inhibitory (E/I) balance in forebrain circuits are thought to contribute to the progression of Alzheimer’s disease (AD) and dementia, although direct evidence for such imbalance in humans is lacking. We assessed anatomical and electrophysiological synaptic E/I ratios in post-mortem parietal cortex samples from middle-aged individuals with AD (early-onset) or Down syndrome (DS) by fluorescence deconvolution tomography and microtransplantation of synaptic membranes. Both approaches revealed significantly elevated E/I ratios for AD, but not DS, versus controls. Gene expression studies in an independent AD cohort also demonstrated elevated E/I ratios in individuals with AD as compared to controls. These findings provide evidence of a marked pro-excitatory perturbation of synaptic E/I balance in AD parietal cortex, a region within the default mode network that is overly active in the disorder, and support the hypothesis that E/I imbalances disrupt cognition-related shifts in cortical activity which contribute to the intellectual decline in AD.


2017 ◽  
Author(s):  
Weiguang Mao ◽  
Elena Zaslavsky ◽  
Boris M. Hartmann ◽  
Stuart C. Sealfon ◽  
Maria Chikina

AbstractA major challenge in gene expression analysis is to accurately infer relevant biological insight, such as regulation of cell type proportion or pathways, from global gene expression studies. We present a general solution for this problem that outperforms available cell proportion inference algorithms, and is more widely useful to automatically identify specific pathways that regulate gene expression. Our method improves replicability and biological insight when applied to trans-eQTL identification.


2017 ◽  
Vol 3 (4) ◽  
pp. 186
Author(s):  
Redi Aditama ◽  
Zulfikar Achmad Tanjung ◽  
Widyartini Made Sudania ◽  
Toni Liwang

<p class="Els-Abstract-text">RNA-seq using the Next Generation Sequencing (NGS) approach is a common technology to analyze large-scale RNA transcript data for gene expression studies. However, an appropriate bioinformatics tool is needed to analyze a large amount of transcriptomes data from RNA-seq experiment. The aim of this study was to construct a system that can be easily applied to analyze RNA-seq data. RNA-seq analysis tool as SMART-RDA was constructed in this study. It is a computational workflow based on Galaxy framework to be used for analyzing RNA-seq raw data into gene expression information. This workflow was adapted from a well-known Tuxedo Protocol for RNA-seq analysis with some modifications. Expression value from each transcriptome was quantitatively stated as Fragments Per Kilobase of exon per Million fragments (FPKM). RNA-seq data of sterile and fertile oil palm (Pisifera) pollens derived from Sequence Read Archive (SRA) NCBI were used to test this workflow in local facility Galaxy server. The results showed that differentially gene expression in pollens might be responsible for sterile and fertile characteristics in palm oil Pisifera.</p><p><strong>Keywords:</strong> FPKM; Galaxy workflow; Gene expression; RNA sequencing.</p>


Sign in / Sign up

Export Citation Format

Share Document