scholarly journals Nonlinear mixed effects models for comparing growth curves for Guzerá cattle

Author(s):  
Raphael Fernandes Soares ALVES ◽  
Kaléo Dias PEREIRA ◽  
Antônio Policarpo Souza CARNEIRO ◽  
Paulo Cesar EMILIANO ◽  
Paulo Luiz Souza CARNEIRO ◽  
...  

ABSTRACT The objective of the present work was to evaluate the accuracy of the fitted Gompertz and von Bertalanffy models for male and female Guzerá cattle, respectively. Four production regions in Northeast Brazil were included in the models as a fixed effect, and the animals were included as a random effect. In addition, the coefficients of the growth models in the production regions were compared. The accuracy of the fit equations was assessed with the Akaike information criterion, Bayesian information criterion, mean absolute deviation, mean squared error, and coefficient of determination. Confidence intervals were used for comparing the production regions. The Guzerá males in the Gado-Algodão and Serra Geral da Bahia production regions were statistically equal in asymptotic weight, and the animals in the Itapetinga-Valadares and Mata-Agreste regions had equivalent maturity rates. The Guzerá females in the Itapetinga-Valadares and Serra Geral da Bahia regions had the same asymptotic weight. The maturity rates in Itapetinga-Valadares were equal to those estimated for Mata-Agreste and Serra Geral da Bahia. The inclusion of the fixed effect of the production region and the random effect of the animals in the models improved the fit quality and increased the possibility of generating growth curves for each region.

2018 ◽  
Vol 39 (3) ◽  
pp. 1327
Author(s):  
Cleber Franklin Santos de Oliveira ◽  
João Marcos Novais Tavares ◽  
Gerusa Da Silva Salles Corrêa ◽  
Bruno Serpa Vieira ◽  
Silvana Alves Pedrozo Vitalino Barbosa ◽  
...  

The aim of this study was to compare mathematical models describing growth curves of white-egg layers at different population densities. To fit the models, 4,000 growing white-egg layers were utilized. The experimental design was completely randomized, with population densities of 71, 68, 65, 62, and 59 birds per cage in the starter phase and 19, 17, 15, 13, and 11 birds per cage in the grower phase, with 10 replicates each. Birds were weighed weekly to determine the average body weight and the weight gain. Gompertz and Logistic models were utilized to estimate their growth. The data analysis was carried out using the PROC NLMIXED procedure of the SAS® statistical computer software to estimate the parameters of the equation because mixed models were employed. The mean squared error, the coefficient of determination, and Akaike’s information criterion were used to evaluate the quality of fit of the models. The studied models converged for the description of the growth of the birds at the different densities studied, showing that they were appropriate for estimating the growth of white-egg layers housed at different population densities. The Gompertz model showed a better fit than the Logistic model.


2018 ◽  
Vol 39 (6) ◽  
pp. 2659 ◽  
Author(s):  
André Luiz Pinto dos Santos ◽  
Guilherme Rocha Moreira ◽  
Cicero Carlos Ramos de Brito ◽  
Frank Gomes-Silva ◽  
Maria Lindomárcia Leonardo da Costa ◽  
...  

This study aims to propose a method to generate growth and degrowth models using differential equations as well as to present a model based on the method proposed, compare it with the classic linear mathematical models Logistic, Von Bertalanffy, Brody, Gompertz, and Richards, and identify the one that best represents the mean growth curve. To that end, data on Undefined Breed (UB) goats and Santa Inês sheep from the works of Cavalcante et al. (2013) and Sarmento et al. (2006a), respectively, were used. Goodness-of-fit was measured using residual mean squares (RMS), Akaike information criterion (AIC), Bayesian information criterion (BIC), mean absolute deviation (MAD), and adjusted coefficient of determination . The models’ parameters (?, weight at adulthood; ?, an integration constant; ?, shape parameter with no biological interpretation; k, maturation rate; and m, inflection point) were estimated by the least squares method using Levenberg-Marquardt algorithm on the software IBM SPSS Statistics 1.0. It was observed that the proposed model was superior to the others to study the growth curves of goats and sheep according to the methodology and conditions under which the present study was carried out.


2011 ◽  
Vol 41 (12) ◽  
pp. 2267-2275 ◽  
Author(s):  
Matthew B. Russell ◽  
Aaron R. Weiskittel ◽  
John A. Kershaw

Tree basal area (ba) or diameter at breast height (dbh) are universally used to represent tree secondary growth in individual tree based growth models. However, the long-term implications of using either ba or dbh for predictions are rarely fully assessed. In this analysis, Δba and Δdbh increment equations were fit to identical datasets gathered from six conifer and four hardwood species grown in central Maine. The performance of Δba and Δdbh predictions from nonlinear mixed-effects models were then compared with observed growth measurements of up to 29 years via a Monte Carlo simulation. Two evaluation statistics indicated substantial improvement in forecasting dbh using Δdbh rather than Δba. Root mean squared error (RMSE) and percentage mean absolute deviation (MAD%) were reduced by 14% and 15% on average, respectively, across all projection length intervals (5–29 years) when Δdbh was used over Δba. Differences were especially noted as projection lengths increased. RMSE and MAD% were reduced by 24% when Δdbh was employed over Δba at longer projection lengths (up to 29 years). Simulations found that simulating random effects rather than using local estimates for random effects performed as well or better at longer interval lengths. These results highlight the implications that selecting a growth model dependent variable can have and the importance of incorporating model uncertainty into the growth projections of individual tree based models.


2017 ◽  
Vol 47 (4) ◽  
Author(s):  
Felipe Amorim Caetano Souza ◽  
Tales Jesus Fernandes ◽  
Raquel Silva de Moura ◽  
Sarah Laguna Conceição Meirelles ◽  
Rafaela Aparecida Ribeiro ◽  
...  

ABSTRACT: The analysis of the growth and development of various species has been done using the growth curves of the specific animal based on non-linear models. The objective of the current study was to evaluate the fit of the Brody, Gompertz, Logistic and von Bertalanffy models to the cross-sectional data of the live weight of the MangalargaMarchador horses to identify the best model and make accurate predictions regarding the growth and maturity in the males and females of this breed. The study involved recording the weight of 214 horses, of which 94 were males and 120 were non-pregnant females, between 6 and 153 months of age. The parameters of the model were estimated by employing the method of least squares, using the iteratively regularized Gauss-Newton method and the R software package. Comparison of the models was done based on the following criteria: coefficient of determination (R²); Residual Standard Deviation (RSD); corrected Akaike Information Criterion (AICc). The estimated weight of the adult horses by the models ranged between 431kg and 439kg for males and between 416kg and 420kg for females. The growth curves were studied using the cross-sectional data collection method. For males the von Bertalanffymodel was found to be the most effective in expressing growth, while in females the Brody model was more suitable. The MangalargaMarchador females achieve adult body weight earlier than the males.


2018 ◽  
Vol 80 (01) ◽  
pp. 072-078 ◽  
Author(s):  
Berdine Heesterman ◽  
John-Melle Bokhorst ◽  
Lisa de Pont ◽  
Berit Verbist ◽  
Jean-Pierre Bayley ◽  
...  

Background To improve our understanding of the natural course of head and neck paragangliomas (HNPGL) and ultimately differentiate between cases that benefit from early treatment and those that are best left untreated, we studied the growth dynamics of 77 HNPGL managed with primary observation. Methods Using digitally available magnetic resonance images, tumor volume was estimated at three time points. Subsequently, nonlinear least squares regression was used to fit seven mathematical models to the observed growth data. Goodness of fit was assessed with the coefficient of determination (R 2) and root-mean-squared error. The models were compared with Kruskal–Wallis one-way analysis of variance and subsequent post-hoc tests. In addition, the credibility of predictions (age at onset of neoplastic growth and estimated volume at age 90) was evaluated. Results Equations generating sigmoidal-shaped growth curves (Gompertz, logistic, Spratt and Bertalanffy) provided a good fit (median R 2: 0.996–1.00) and better described the observed data compared with the linear, exponential, and Mendelsohn equations (p < 0.001). Although there was no statistically significant difference between the sigmoidal-shaped growth curves regarding the goodness of fit, a realistic age at onset and estimated volume at age 90 were most often predicted by the Bertalanffy model. Conclusions Growth of HNPGL is best described by decelerating tumor growth laws, with a preference for the Bertalanffy model. To the best of our knowledge, this is the first time that this often-neglected model has been successfully fitted to clinically obtained growth data.


2020 ◽  
Vol 87 (2) ◽  
pp. 220-225
Author(s):  
Navid Ghavi Hossein-Zadeh ◽  
Hassan Darmani Kuhi ◽  
James France ◽  
Secundino López

AbstractThe aim of the work reported here was to investigate the appropriateness of a sinusoidal function by applying it to model the cumulative lactation curves for milk yield and composition in primiparous Holstein cows, and to compare it with three conventional growth models (linear, Richards and Morgan). Data used in this study were 911 144 test-day records for milk, fat and protein yields, which were recorded on 834 dairy herds from 2000 to 2011 by the Animal Breeding Centre and Promotion of Animal Products of Iran. Each function was fitted to the test-day production records using appropriate procedures in SAS (PROC REG for the linear model and PROC NLIN for the Richards, Morgan and sinusoidal equations) and the parameters were estimated. The models were tested for goodness of fit using adjusted coefficient of determination $\lpar {R_{{\rm adj}}^2 } \rpar $, root mean square error (RMSE), Akaike's information criterion (AIC) and the Bayesian information criterion (BIC). $R_{{\rm adj}}^2 $ values were generally high (>0.999), implying suitable fits to the data, and showed little differences among the models for cumulative yields. The sinusoidal equation provided the lowest values of RMSE, AIC and BIC, and therefore the best fit to the lactation curve for cumulative milk, fat and protein yields. The linear model gave the poorest fit to the cumulative lactation curve for all production traits. The current results show that classical growth functions can be fitted accurately to cumulative lactation curves for production traits, but the new sinusoidal equation introduced herein, by providing best goodness of fit, can be considered a useful alternative to conventional models in dairy research.


2019 ◽  
Vol 32 (1) ◽  
pp. 251-258 ◽  
Author(s):  
Francisco Arthur Arré ◽  
José Elivalto Guimarães Campelo ◽  
José Lindenberg Rocha Sarmento ◽  
Luiz Antônio Silva Figueiredo Filho ◽  
Diego Helcias Cavalcante

ABSTRACT The objective of this study was to determine the optimum age at last weighing and compare the goodness of fit of nonlinear models used to fit longitudinal weight-age data to describe the growth pattern of Anglo-Nubian does. Weights of 104 animals from birth to 60 months of age were grouped into 10 age groups at six-month intervals. In each age group, parameters A (asymptotic weight), B (integration constant), and K (maturity index) were estimated using the Brody, Gompertz, logistic, and von Bertalanffy models. Data were analyzed using analysis of variance in a factorial design (10 age groups × 4 nonlinear models). The age group × model interaction was not significant. Mean estimates of A, B, and K were significantly different between age groups up to 30 months (p < 0.05), indicating that the estimated curve is affected by weights taken before this age independent of the model. The values of mean squared error (MSE), mean absolute deviation (MAD), coefficient of determination (R2) and Rate of convergence (RC) at each age group up to 30 months were compared to determine the goodness of fit of nonlinear models. The ranking of fit was logistic, Brody, von Bertalanffy, and Gompertz. The logistic and Brody models respectively estimated the smallest and largest asymptotic weight. Longitudinal weight records taken until 30 months of age are most appropriate for estimating the growth of Anglo-Nubian does using nonlinear models.


Fishes ◽  
2021 ◽  
Vol 6 (4) ◽  
pp. 60
Author(s):  
Sergio G. Castillo-Vargasmachuca ◽  
Eugenio Alberto Aragón-Noriega ◽  
Guillermo Rodríguez-Domínguez ◽  
Leonardo Martínez-Cárdenas ◽  
Eulalio Arámbul-Muñoz ◽  
...  

In the present study, size-at-age data (length and weight) of marine cage-reared spotted rose snapper Lutjanus guttatus were analyzed under four different variance assumptions (observed, constant, depensatory, and compensatory variances) to analyze the robustness of selecting the right standard deviation structure to parametrize the von Bertalanffy, Logistic, and Gompertz models. The selection of the best model and variance criteria was obtained based on the Bayesian information criterion (BIC). According to the BIC results, the observed variance in the present study was the best way to parametrize the three abovementioned growth models, and the Gompertz model best represented the length and weight growth curves. Based on these results, using the observed error structure to calculate the growth parameters in multi-model inference analyses is recommended.


2019 ◽  
Author(s):  
André Luiz Pinto dos Santos ◽  
Guilherme Rocha Moreira ◽  
Frank Gomes-Silva ◽  
Cícero Carlos Ramos de Brito ◽  
Maria Lindomárcia Leonardo da Costa ◽  
...  

AbstractMathematical models that describe gas production are widely used to estimate the rumen degradation digestibility and kinetics. The present study presents a method to generate models by combining existing models and to propose the von Bertalanffy-Gompertz two-compartment model based on this method. The proposed model was compared with the logistic two-compartment one to indicate which best describes the kinetic curve of gas production through the semi-automatedin vitrotechnique from different pinto peanut cultivars. The data came from an experiment grown and harvested at the Far South Animal Sciences station (Essul) in Itabela, BA, Brazil and gas production was read at 2, 4, 6, 8, 10, 12, 14, 17, 20, 24, 28, 32, 48, 72, and 96 h after the start of thein vitrofermentation process. The parameters were estimated by the least squares method using the iterative Gauss-Newton process in the software R version 3.4.1. The best model to describe gas accumulation was based on the adjusted coefficient of determination, residual mean squares, mean absolute deviation, Akaike information criterion, and Bayesian information criterion. The von Bertalanffy-Gompertz two-compartment model had the best fit to describe the cumulative gas production over time according to the methodology and conditions of the present study.


2017 ◽  
Vol 38 (5) ◽  
pp. 2933
Author(s):  
Cláudia Marques de Bem ◽  
Alberto Cargnelutti Filho ◽  
Giovani Facco ◽  
Denison Esequiel Schabarum ◽  
Daniela Lixinski Silveira ◽  
...  

The objective of the present study was to fit Gompertz and Logistic nonlinear to descriptions of morphological traits of sunn hemp. Two uniformity trials were conducted and the crops received identical treatment in all experimental area. Sunn hemp seeds were sown in rows 0.5 m apart with a plant density of 20 plants per row meter in a usable area of 52 m × 50 m. The following morphological traits were evaluated: plant height (PH), number of leaves (NL), stem diameter (SD), and root length (RL). These traits were assessed daily during two sowing periods—seeds were sown on October 22, 2014 (first period) and December 3, 2014 (second period). Four plants were randomly collected daily, beginning 7 days after first period and 13 days after for second period, totaling 94 and 76 evaluation days, respectively. For Gompertz models the equation was used y=a*e^((?-e?^((b-c*xi))and Logistic models the equation was used yi= a/(1+e^((-b-c*xi)). The inflection points of the Gompertz and Logistic models were calculated and the goodness of fit was quantified using the adjusted coefficient of determination, Akaike information criterion, standard deviation of residuals, mean absolute deviation, mean absolute percentage error, and mean prediction error. Differences were observed between the Gompertz and Logistic models and between the experimental periods in the parameter estimate for all morphological traits measured. Satisfactory growth curve fittings were achieved for plant height, number of leaves, and stem diameter in both models using the evaluation criteria: coefficient of determination (R²), Akaike information criterion (AIC), standard deviation of residuals (SDR), mean absolute deviation (MAD), mean absolute percentage error (MAPE), and mean prediction error (MPE).


Sign in / Sign up

Export Citation Format

Share Document