scholarly journals The role of matrix effects on the quantification of abscisic acid and its metabolites in the leaves of Bauhinia variegata L. using liquid chromatography combined with tandem mass spectrometry

2012 ◽  
Vol 24 (3) ◽  
pp. 223-232 ◽  
Author(s):  
Carolina M. Santiago da Silva ◽  
Gustavo Habermann ◽  
Mary R. R. Marchi ◽  
Guilherme J. Zocolo
2018 ◽  
Vol 10 (4) ◽  
pp. 87
Author(s):  
Yahdiana Harahap ◽  
Norma Andriyani ◽  
Harmita .

Objective: To obtain an optimum and validated method for analyzing lercanidipine in plasma using Ultra Performance Liquid Chromatography of Tandem Mass Spectrometry (UPLC-MS/MS).Methods: The separation was carried out using 1.7μm (2.1 x 100 mm) Waters AcquityTM UPLC C18 column, a mobile phase of the 0.1% formic acid-methanol mixture (20:80 v/v) with isocratic elution, 30 °C column temperature, 0.2 ml/min flow rate and amlodipine as an internal standard. Mass detection was performed with a positive XBL TQD type Electrospray Ionization (ESI) in Multiple Reaction Monitoring modes. Lercanidipine was detected at m/z value of 612.11>280.27 and amlodipine was detected at m/z value 409.1>238.15. The optimum sample preparation method was a liquid-liquid extraction using 5 ml of n-hexane-ethyl acetate (50:50 v/v), vortex mixed for 3 min, centrifuged at 4000 rpm for 20 min, evaporated with nitrogen at 50 °C for 30 min, and the residue was reconstituted with 100 μl of mobile phase.Results: The method was linear in the range of 0.025-10 ng/ml with r ≥ 0.9986. Accuracy and precision within-run and between-run met the requirements with %diff and %CV, not exceeding ± 15% and not more than ± 20% for Lower Limit of Quantification (LLOQ) concentration.Conclusion: It was concluded that the developed method met the requirements of selectivity, carry over, stability, the integrity of dilution, and matrix effects under the Guideline on Bioanalytical Method Validation by the European Medicines Agency in 2011. 


2013 ◽  
Vol 59 (2) ◽  
pp. 372-380 ◽  
Author(s):  
Julianne Cook Botelho ◽  
Christopher Shacklady ◽  
Hans C Cooper ◽  
Susan S-C Tai ◽  
Katleen Van Uytfanghe ◽  
...  

BACKGROUND We developed and evaluated a candidate reference measurement procedure (RMP) to standardize testosterone measurements, provide highly accurate and precise value assignments for the CDC Hormone Standardization Program, and ensure accurate and comparable results across testing systems and laboratories. METHODS After 2 liquid/liquid extractions of serum with a combination of ethyl acetate and hexane, we quantified testosterone by isotope-dilution liquid chromatography–tandem mass spectrometry with electrospray ionization in the positive ion mode monitoring 289→97 m/z (testosterone) and 292→112 m/z (3C13 testosterone). We used calibrator bracketing and gravimetric measurements to give higher specificity and accuracy to serum value assignments. The candidate RMP was evaluated for accuracy by use of NIST-certified reference material SRM971 and validated by split-sample comparison to established RMPs. We evaluated intraassay and interassay imprecision, measurement uncertainty, potential interferences, and matrix effects. RESULTS A weighted Deming regression comparison of the candidate RMP to established RMPs showed agreement with no statistical difference (slope 0.99, 95% CI 0.98–1.00, intercept 0.54, 95% CI −1.24 to 2.32) and a bias of ≤0.3% for NIST SRM971. The candidate RMP gave maximum intraassay, interassay, and total percent CVs of 1.5%, 1.4%, and 1.7% across the concentrations of testosterone typically found in healthy men and women. We tested structural analogs of testosterone and 125 serum samples and found no interferences with the measurement. CONCLUSIONS This RMP for testosterone can serve as a higher-order standard for measurement traceability and can be used to provide an accuracy base to which routine methods can be compared in the CDC Hormone Standardization Program.


2019 ◽  
Vol 58 (2) ◽  
pp. 109-116
Author(s):  
Lili Ma ◽  
Liuwei Zhao ◽  
Jiaqi Wang ◽  
Canping Pan ◽  
Cong Liu ◽  
...  

Abstract A multiresidue method for determining 12 carbamate pesticides in purple cabbage, orange, watermelon, cucumber, cowpea and Lactuca sativa L. employing multi-plug filtration cleanup (m-PFC) and ultra-performance liquid chromatography coupled with electrospray ionization tandem mass spectrometry (UPLC-ESI-MS/MS) was developed. M-PFC was carried out by cleanup at dispersive solid phase extraction (d-SPE), one m-PFC tip-filtration, two m-PFC tip-filtration and other methods (1–3 m-PFC cleanups). Results demonstrated that filtration simplified the cleanup method compared with d-SPE and other m-PFC methods (1–3 m-PFC cleanups). The method validation results showed that the method was linear, selective and accurate. The limits of quantification (LOQs) were 0.05–5.0 μg/kg, and the recoveries were in the range of 70.1–119.9% in different matrices. Although matrix effects were observed, they were successfully compensated using matrix-matched calibration. Finally, the developed method was successfully applied to detect pesticides in real samples.


2017 ◽  
Vol 80 (12) ◽  
pp. 2112-2118 ◽  
Author(s):  
Dan Hu ◽  
Xu Xu ◽  
Tian Cai ◽  
Wei-Ying Wang ◽  
Chun-Jie Wu ◽  
...  

ABSTRACTA rapid and sensitive analytical method based on high-performance liquid chromatography–tandem mass spectrometry was developed and validated for the determination of isopyrazam (IZM) and azoxystrobin (AZT) in cucumbers. A modified QuEChERS (quick, easy, cheap, effective, rugged, and safe) method was used as the pretreatment procedure. The samples were extracted with acetonitrile and cleaned up with octadecylsilyl silica (C18) and graphite carbon black. The proposed method resulted in satisfactory recovery of IZM and AZT (91.48 to 114.62%), and relative standard deviations were less than 13.1% at fortification concentrations of 1, 20, and 500 μg kg−1 (n = 3). The limits of quantification for IZM and AZT were 0.498 and 0.499 μg kg−1, respectively, which are far below the maximum residue level (0.5 mg kg−1) established for this type of sample. Matrix effects were also evaluated. This study established a sensitive and fast method for the detection of IZM and AZT in cucumber samples.


Sign in / Sign up

Export Citation Format

Share Document