scholarly journals Numerical and experimental assessment of a typical brazilian footbridge

2018 ◽  
Vol 11 (5) ◽  
pp. 1025-1035
Author(s):  
G. N. DOZ ◽  
J. L. V. BRITO ◽  
A. BRASILIANO

Abstract For the range of medium spans, around 30 to 40m, composite footbridges are getting popular in Brazil. This kind of structure consists on longitudinal steel truss beams providing support for a concrete deck usually made of precast elements. Typical examples of these structures may be found in many cities in Brazil, especially in Brasilia where a large number of highways demanded a significant set of footbridges. Due to the amount of this kind of composite footbridges in Brazil, studies concerning their mechanical behavior are required in order to ensure pedestrian’s safety. For this end, in this paper, a typical Brazilian composite footbridge located in Brasilia is analyzed by means of experimental tests and computational modeling. The focus is the determination of natural frequencies and mode shapes. Strategies to correctly obtain the vertical modes are also discussed since vertical vibration is the main vibration problem expected for the tested footbridge. The obtained results showed that structural balance between stiffness and mass leads to natural frequencies out of the critical frequency range excited by pedestrians in normal use, although the idea was not to measure how these parameters, mass or stiffness, could influence the model. Moreover, Finite Element models were evaluated comparing complexity versus accuracy to predict modal parameters.

Author(s):  
Adam Koscso ◽  
Guido Dhondt ◽  
E. P. Petrov

A new method has been developed for sensitivity calculations of modal characteristics of bladed disks made of anisotropic materials. The method allows the determination of the sensitivity of the natural frequencies and mode shapes of mistuned bladed disks with respect to anisotropy angles that define the crystal orientation of the monocrystalline blades using full-scale finite element models. An enhanced method is proposed to provide high accuracy for the sensitivity analysis of mode shapes. An approach has also been developed for transforming the modal sensitivities to coordinate systems used in industry for description of the blade anisotropy orientations. The capabilities of the developed methods are demonstrated on examples of a single blade and a mistuned realistic bladed disk finite element models. The modal sensitivity of mistuned bladed disks to anisotropic material orientation is thoroughly studied.


2018 ◽  
Vol 141 (2) ◽  
Author(s):  
Adam Koscso ◽  
Guido Dhondt ◽  
E. P. Petrov

A new method has been developed for sensitivity calculations of modal characteristics of bladed disks made of anisotropic materials. The method allows the determination of the sensitivity of the natural frequencies and mode shapes of mistuned bladed disks with respect to anisotropy angles that define the crystal orientation of the monocrystalline blades using full-scale finite element models. An enhanced method is proposed to provide high accuracy for the sensitivity analysis of mode shapes. An approach has also been developed for transforming the modal sensitivities to coordinate systems (CS) used in industry for description of the blade anisotropy orientations. The capabilities of the developed methods are demonstrated on examples of a single blade and a mistuned realistic bladed disk finite element models. The modal sensitivity of mistuned bladed disks to anisotropic material orientation is thoroughly studied.


Author(s):  
Eduard Egusquiza ◽  
Carme Valero ◽  
Quanwei Liang ◽  
Miguel Coussirat ◽  
Ulrich Seidel

In this paper, the reduction in the natural frequencies of a pump-turbine impeller prototype when submerged in water has been investigated. The impeller, with a diameter of 2.870m belongs to a pump-turbine unit with a power of around 100MW. To analyze the influence of the added mass, both experimental tests and numerical simulations have been carried out. The experiment has been performed in air and in water. From the frequency response functions the modal characteristics such as natural frequencies and mode shapes have been obtained. A numerical simulation using FEM (Finite Elements Model) was done using the same boundary conditions as in the experiment (impeller in air and surrounded by a mass of water). The modal behaviour has also been calculated. The numerical results were compared with the available experimental results. The comparison shows a good agreement in the natural frequency values both in air and in water. The reduction in frequency due to the added mass effect of surrounding fluid has been calculated. The physics of this phenomenon due to the fluid structure interaction has been investigated from the analysis of the mode-shapes.


1964 ◽  
Vol 54 (4) ◽  
pp. 1233-1254
Author(s):  
Moshe F. Rubinstein

Abstract The first n natural frequencies and mode shapes of an N degree of freedom structure (n < N) are derived from the solution of a reduced eigenvalue problem of order smaller than N. The reduced eigenvalue problem is formulated by using experience to select approximations to the first n modes desired. Accuracy is improved when more than n modes are selected. The method is illustrated by a study on an 18 story building.


1974 ◽  
Vol 96 (2) ◽  
pp. 697-698 ◽  
Author(s):  
M. S. Hundal

A method is described for the determination of natural frequencies and mode shapes of closed drive trains. It is an extension of the Holzer method to a redundant system. The “error” for a given value of frequency is computed by the solution of a tridiagonal system of equations.


2001 ◽  
Vol 25 (12) ◽  
pp. 1099-1115 ◽  
Author(s):  
F.T.K. Au ◽  
Y.S. Cheng ◽  
Y.K. Cheung ◽  
D.Y. Zheng

Author(s):  
Olav Fyrileiv ◽  
Kim Mo̸rk

One of the main risk factors for subsea pipelines exposed on the seabed is fatigue failure of free spans due to ocean current or wave loading. This paper describes how the structural response of a free span, as input to the fatigue analyses, can be assessed in a simple and still accurate way by using improved beam theory formulations. In connection with the release of the DNV Recommended Practice, DNV-RP-F105 “Free Spanning Pipelines”, the simplified structural response quantities have been improved compared to previous codes. The boundary condition coefficients for the beam theory formulations have been updated based an effective span length concept. This concept is partly based on theoretical studies and partly on a large number of FE analyses. The updated expressions are general and fit all types of soil and pipe dimensions for lower lateral and vertical vibration modes. The present paper focus on estimation of simplified response quantities such as lower natural frequencies and associated mode shapes. Hydrodynamical aspects of Vortex Induced Vibrations (VIV) are outside the scope of this paper.


2019 ◽  
Vol 15 (2) ◽  
pp. 26-31
Author(s):  
Mahesh Chandra Luintel

Dynamic response of any single degree of freedom (SDOF) vibratory system is studied by evaluating its natural frequencies whereas that of any multi degree of freedom (MDOF) vibratory system is studied by evaluating its natural frequencies and corresponding mode shapes. Efficient method to determine the natural frequencies and mode shape of a MDOF system is to determine its dynamic matrix and to calculate its eigen-values and eigen-vectors. As the number of degree of freedom (DOF) of the system increases, the size of the dynamic matrix increases and the use of a computer program or package become essential. Hence this paper proposes a new method to directly calculate the coefficients of characteristic equation of any degree of freedom system from which eigen-values and then natural frequencies can be determined.  


Author(s):  
Liga Gaile ◽  
Ivars Radinsh

The present study focuses on the tower type structures response to the dynamic loads. The study analyzes the possible mode shapes regarding to tower structure. The estimation of mode shapes and their dependence from structural changes was made for an existing tower structure. To get an acceptable tower’s vibration level and avoid possibility of resonance effect from usual serviceability loads it was evaluated options to change natural frequencies of the structure. It is performed existing 36m high sightseeing tower dynamic analysis and proposed potential solutions to increase critical natural frequencies of the structure. In this study to obtain dynamic parameters of the sightseeing tower structure have been used finite element models and calculation techniques.


Sign in / Sign up

Export Citation Format

Share Document