scholarly journals Solubility enhancement, physicochemical characterization and formulation of fast-dissolving tablet of nifedipine-betacyclodextrin complexes

2012 ◽  
Vol 48 (1) ◽  
pp. 131-145 ◽  
Author(s):  
Swati Changdeo Jagdale ◽  
Vinayak Narhari Jadhav ◽  
Aniruddha Rajaram Chabukswar ◽  
Bhanudas Shankar Kuchekar

The main objective of the study was to enhance the dissolution of nifedipine, a poorly water soluble drug by betacyclodextrin complexation and to study the effect of the preparation method on the in vitro dissolution profile. The stoichiometric ratio determined by phase solubility analysis for inclusion complexation of nifedipine with β-cyclodextrin was 1:1. Binary complex was prepared by different methods and was further characterized using XRD, DSC and FT-IR. A saturation solubility study was carried out to evaluate the increase in solubility of nifedipine. The optimized complex was formulated into fast-dissolving tablets by using the superdisintegrants Doshion P544, pregelatinized starch, crospovidone, sodium starch glycolate and croscarmellose sodium by direct compression. Tablets were evaluated for friability, hardness, weight variation, disintegration and in vitro dissolution. Tablets showed an enhanced dissolution rate compared to pure nifedipine.

1970 ◽  
Vol 6 (1) ◽  
pp. 25-36 ◽  
Author(s):  
RP Patel ◽  
MM Patel

Several attempts have been made to improve the solubility of water insoluble drugs. Over the years, inclusion complexation of drugs with ?-cyclodextrin has emerged as a viable attempt to improve the dissolution of water insoluble drugs. The aim of the present work was to improve the dissolution rate of lovastatin, a water insoluble drug, by inclusion complexation with ?-cyclodextrin. The stoichiometric ratio determined by phase solubility analysis for inclusion complexation of lovastatin with ?-cyclodextrin was 1:1. The solubility of lovastatin increased with increasing amount of ?-cyclodextrin in water. Gibbs free energy (?Gtr°) values were all negative, indicating the spontaneous nature of lovastatin solubilization. Complexes of lovastatin were prepared with ?-cyclodextrin by various methods such as kneading, coevaporation and physical mixing. The complexes were characterized by Fourier-transform infrared (FTIR) spectroscopy, differential scanning calorimetry (DSC), and X-ray diffraction (XRD) patterns. These studies indicated the inclusion of lovastatin in the cavity of ?-cyclodextrin. The complexation resulted in a marked improvement in the solubility of lovastatin. The complex prepared by kneading method showed fastest and highest in vitro dissolution rate compared to the tablets of pure of lovastatin. Physical mixture of ?-cyclodextrin/lovastatin also showed significant improvement in the dissolution rate compared to pure lovastatin. Mean dissolution time (MDT) of lovastatin decreased significantly after preparation of complexes and physical mixture of lovastatin with ?-cyclodextrin. Similarity factor (f2) indicated significant difference between the release profiles of lovastatin from complexes and from pure lovastatin. Key words: Lovastatin, ?-cyclodextrin, inclusion complexation, in vitro dissolution studies. Dhaka Univ. J. Pharm. Sci. 6(1): 25-36, 2007 (June) The full text is of this article is available at the Dhaka Univ. J. Pharm. Sci. website


2020 ◽  
Vol 9 (1) ◽  
pp. 744-750
Author(s):  
Ramadan I. Al-Shdefat

AbstractPreparation of inclusion complex using cyclodextrins is a well-known formulation strategy to elevate the solubility of drugs. However, often cyclodextrins alone may not bring a considerable improvement in the solubility of low solubility drugs. In this study, the inclusion complexation of furosemide (FSM) was tried with β-cyclodextrin (β-CD) either with the use or without the use of sodium lauryl sulfate (SLS), which is a surfactant. By using the kneading method, the binary complex of FSM/β-CD in the equal molar ratio was used. FSM and β-CD were kneaded continuously until a thick past was achieved, which was evaporated for a period of about 24 h. The solid complexed product was then crushed and stored in airtight container until use. Phase solubility studies confirmed a stoichiometric ratio of 1:1 (FSM/β-CD and FSM/β-CD with SLS). The apparent stability constant and complexation efficiencies of significantly enhanced in the presence of SLS. The prepared complexes were evaluated for DSC, PXRD, 1H NMR, and in vitro release studies. The results exhibited a significant enhancement in diuresis in rats. It is evident that the addition of SLS with β-CD significantly enhances the solubilizing efficiencies and hence bioavailability of FSM.


Author(s):  
Sudarshan Singh ◽  
S S Shyale ◽  
P Karade

The aim of this study was to design orally disintegrating tablet (ODT) of Lamotrigine. It is an Antiepileptic drug which is widely used in epilepsy. It is also used in simple and complex partial seizures and secondary generalized tonic-clonic seizures. It is poorly water soluble drug (0.46 mg/ml). Thus, an attempt was made to enhance the water solubility by complexation with β-cyclodextrin (1:1 molar ratios). The orally disintegrating tablet of lamotrigine was prepared by direct compression method using different concentration of superdisintegrants such as Sodium starch glycollate, croscarmellose sodium by sublimating agent such as camphor. The formulations were evaluated for weight variation, hardness, friability, drug content, wetting time, in vitro disintegration time and in vitro dissolution studies. The prepared tablets were characterized by Fourier transform infrared spectroscopy and differential scanning calorimetry. The disintegration time for the complexed tablets prepared by different concentration of superdisintegrants was found to be in range of 32.54 ± 0.50 to 55.12 ± 0.57 sec and wetting time of the formulations was found to be in range of 28.47 ± 0.67 to 52.19 ± 0.72 sec. All the formulation showed almost 100 percent of drug release within 15 min. Among all the formulation F6 and F7 prepared with 18% croscarmellose sodium and camphor shows faster drug release, respectively 10 min, F6 gives good result for disintegration time, drug release, wetting time and friability. Further formulations were subjected to stability testing for 30 days at temperature of 40 ± 5 ºC/75 ± 5 %RH. Tablets showed no appreciable changes with respect to physical appearance, drug content, disintegration time and dissolution profiles. Results were statistically analyzed by one-way ANOVA at a p < 0.05. It was found that, the data at any point of time are significant at p < 0.05.


INDIAN DRUGS ◽  
2015 ◽  
Vol 52 (11) ◽  
pp. 19-23
Author(s):  
J Shaikh ◽  
◽  
S. V. Deshmane ◽  
R. N Purohit ◽  
K. R. Biyani

The main objective of the present study was to enhance the solubility and dissolution rate of poorly water soluble aceclofenac using its solid dispersion with β-cyclodextrin. FTIR and DSC study was carried out to find out any incompatibility. The phase solubility of drug was carried out in 1, 2, 5, and 10% of β-cyclodextrin in distilled water. Kneading method and solvent evaporation method was use to prepared solid dispersion of aceclofenac and β-cyclodextrin. Different evaluation tests like solubility study in different solvents, PXRD and in vitro dissolution study of aceclofenac- β-cyclodextrin inclusion complex were carried out. The overall finding indicated that β-cyclodextrin is a desirable water soluble carrier, that helps in increasing solubility of drug. Due to its structural feature, β-cyclodextrin forms a good inclusion complex that decreases contact angle of drug with water molecules by increasing wetting properties. Hence, it can be concluded that, β-cyclodextrin is better water soluble carrier molecule in terms of its compatibility and increasing solubility behavior of poorly water soluble drug aceclofenac.


Author(s):  
Ahmed H. Ali ◽  
Shaimaa N. Abd-Alhammid

       Atorvastatin have problem of very slightly aqueous solubility (0.1-1 mg/ml). Nano-suspension is used to enhance it’s of solubility and dissolution profile. The aim of this study is to formulate Atorvastatin as a nano-suspension to enhance its solubility due to increased surface area of exposed for dissolution medium, according to Noyes-Whitney equation.         Thirty one formulae were prepared to evaluate the effect of ; Type of polymer, polymer: drug ratio, speed of homogenization, temperature of preparation and inclusion of co-stabilizer in addition to the primary one; using solvent-anti-solvent precipitation method under high power of ultra-sonication. In this study five types of stabilizers (TPGS, PVP K30, HPMC E5, HPMC E15, and Tween80) were used in three different concentrations 1:1, 1:0.75 and 1:0.5 for preparing of formulations. At the same time, tween80 and sodium lauryl sulphate have been added as a co-stabilizer.          Atorvastatin nano-suspensions were evaluated for particle size, PDI, zeta potential, crystal form and surface morphology. Finally, results of particle size analysis revealed reduced nano-particulate size to 81nm for optimized formula F18 with the enhancement of in-vitro dissolution profile up to 90% compared to 44% percentage cumulative release for the reference Atorvastatin calcium powder in 6.8 phosphate buffer media. Furthermore, saturation solubility of freeze dried Nano suspension showed 3.3, 3.8, and 3.7 folds increments in distilled water, 0.1N Hcl and 6.8 phosphate buffers, respectively. Later, freeze dried powder formulated as hard gelatin capsules and evaluated according to the USP specifications of the drug content and the disintegration time.        As a conclusion; formulation of poorly water soluble Atorvastatin calcium as nano suspension significantly improved the dissolution of the drug and enhances its solubility.


Author(s):  
Rosy Fatema ◽  
Sumaiya Khan ◽  
A. S. M. Roknuzzaman ◽  
Ramisa Anjum ◽  
Nishat Jahan

Loratadine, a second generation H1-receptor antagonist, works by blocking the action of histamine and is widely prescribed for itching, runny nose, watery eyes, and sneezing from "hay fever" and other allergic conditions. To ensure quality the main requirements for a medicinal product are safety, potency, efficacy and stability. This research work aimed to compare and assess the quality levels of different local brands of loratadine tablets available in the drug market of Bangladesh. Six different brands of loratadine 10 mg tablet manufactured by the local companies were used for the analysis. The evaluation was performed through the determination of weight variation, hardness, friability, percent potency, disintegration time, and dissolution profile in accordance with USP-NF specifications. All brands showed acceptable weight variation and % friability. The percent potency for tested samples by UV method ranges from 97.02%-108%, showing none of the brands contains less than 90% of the active principle as per the specification. The result of the physical and chemical studies, such as in-vitro dissolution, disintegration, hardness, etc., has been found to differ but lie within the specified limit. After analyzing the data obtained from the tests, it can be claimed that loratadine 10 mg tablets manufactured and marketed by several local companies in Bangladesh meet the quality standard required to achieve the desired therapeutic outcomes.


2020 ◽  
Vol 13 (5) ◽  
pp. 100
Author(s):  
Blasco Alejandro ◽  
Torrado Guillermo ◽  
Peña M Ángeles

This work proposes the design of novel oral disintegrating tablets (ODTs) of loperamide HCl with special emphasis on disintegration and dissolution studies. The main goal was augmenting the adherence to treatment of diseases which happen with diarrhea in soldiers who are exposed to diverse kinds of hostile environments. Optimized orally disintegrating tablets were prepared by the direct compression method from galenic development to the industrial scale technique, thanks to strategic and support actions between the Spanish Army Force Lab and the Department of Biomedical Sciences (UAH). The results show that loperamide HCl ODT offers a rapid beginning of action and improvement in the bioavailability of poorly absorbed drugs. The manufactured ODTs complied with the pharmacopeia guidelines regarding hardness, weight variation, thickness, friability, drug content, wetting time, percentage of water absorption, disintegration time, and in vitro dissolution profile. Drug compatibility with excipients was checked by DSC, FTIR, and SEM studies.


Author(s):  
P. V. Swamy ◽  
Laeeq Farhana ◽  
S. B. Shirsand ◽  
Md.Younus Ali ◽  
Ashokgoud Patil

Carvedilol (non-cardio selective b-blocker) is an antihypertensive used in management of hypertension, angina pectoris and heart failure.  But its oral bioavailability is about 25-35% only due to significant degree of first pass metabolism.  It has gastrointestinal side effects such as diarrhea, gastric pain and irritation.  Hence, rectal suppositories of carvedilol were developed by using different water-soluble polymeric bases like gelatin and agar-agar using propylene glycol as plasticizer. The gelatin suppositories were disintegrating/dissolving type while gelatin–agar based suppositories were non-disintegrating/non-melting. All the formulations were evaluated for various physical parameters like weight variation,  drug content uniformity, liquefaction time, micro-melting range, in vitro dissolution, short-term stability and drug-excipient interaction (FTIR).  The mechanism of drug release was diffusion controlled and follows first order kinetics in majority of cases. The results suggested that when gelatin is replaced up to 25% w/w with agar, liquefaction time and drug release were not appreciably affected; higher proportions of agar exhibited incomplete and slow release.  Stability studies conducted at 25±3º C and 60±5% relative humidity for three months indicated that the formulations were stable in the drug-content and in vitro drug release rate (p<0.05).


2017 ◽  
Vol 1 (2) ◽  
pp. 01-03
Author(s):  
Samuel Langhorne

Pramipexole dihydrochloride monohydrate is an antiparkinson’s agent which is known as dopamine D2 receptor agonist. It is structurally different from the ergot-derived drugs, e.g. bromocriptine or pergolide. Pramipexole is designated chemically as (S)-2-Amino-4, 5, 6, and 7-tetrahydro-6-(propylamino) benzothiazole and has the molecular formula C10H17N3S. It comes under class I of Biopharmaceutical Classification System. The purpose of this study was to develop and evaluate pramipexole dihydrochloride monohydrate extended release tablets by wet granulation method using different proportions of polymers and binder. Pre-formulation studies were done initially and the results were found to be within the limits. All the mentioned batches were prepared and granules were evaluated for pre-compression parameters such as loss on drying, bulk density, tapped density and compressibility index. Tablets were evaluated for weight variation, thickness, hardness, friability; disintegration time and assay were found to be within the limits. In vitro dissolutions were performed with 0.05M 6.8 PH phosphate buffer and effect of various polymers were explored. Final selection of formulation was based on dissolution profile, from dissolution studies formulation 9 showed 80% drug release within 20 hours, so it will be compared with innovator. Similarity and difference factors which revealed that formulation (F 9) containing HPMC K 200, Eudragit L100 and binder are most successful as it exhibited in vitro drug release that matched with innovator product. In vitro drug release profile reveals that with increased concentration of Eudragit L 100. Accelerated stability studies were performed for the optimized batch which indicated that there were no changes in drug content and in vitro dissolution.


2019 ◽  
Vol 11 (1) ◽  
pp. 150
Author(s):  
Sreenivas Patro Sisinthy ◽  
Shubbaneswarei Selladurai

Objective: The objective of this research was to formulate cinnarizine tablets using the liquid-solid compact technique to enhance its solubility and dissolution rate.Methods: Cinnarizine liquid-solid compacts were formulated using propylene glycol as the non-volatile solvent, Neusilin US2 as the carrier material, Aerosil 200 as the coating material and croscarmellose sodium as the disintegrant. The interaction between drug and excipients were characterized by Fourier-transform infrared spectroscopy (FTIR) and differential scanning calorimetry (DSC) studies. Different batches of liquid, solid compacts were prepared by using varying carrier-coating excipient ratio and different concentration of liquid medication. Flow parameters such as bulk density, tapped density, Carr’s Index, Hausner’s Ratio as well as an angle of repose were used to test the flowability of the powder blend. The liquid-solid compacts were produced by direct compression method and were evaluated for tests such as weight variation, drug content, hardness, thickness, friability, wetting time, disintegration time as well as the in vitro dissolution studies.Results: The results of the preformulation studies of liquisolid compacts showed acceptable flow properties. The results of FTIR and DSC studies showed that there is no drug-excipient interactions. The different R values and concentrations were found to have a marked effect on the dissolution profile. Formulations with higher carrier: coating ratio (R-value) and lower drug concentrations displayed a better dissolution profile. The percentage of drug release of F3 with an R-value of 20 and a drug concentration of 10% was found to be 88.11% when compared to the conventional marketed tablet which released only 44.07% at the end of 2 h.Conclusion: From this research, it is inferred that liquid-solid technique is a promising and effective approach that can be used to enhance the dissolution rate of cinnarizine.


Sign in / Sign up

Export Citation Format

Share Document