scholarly journals Enrichment of Integrated Steel Plant Process Gases with Implementation of Renewable Energy

Author(s):  
Ana Roza Medved ◽  
Markus Lehner ◽  
Daniel C. Rosenfeld ◽  
Johannes Lindorfer ◽  
Katharina Rechberger

The steel industry is one of the most important industry sectors, but also one of the largest greenhouse gas emitters. The process gases produced in an integrated steel plant, blast furnace gas (BFG), basic oxygen furnace gas (BOFG) and coke oven gas (COG), are due to high shares of inert gas (N2) in large part energy poor but also providing a potential carbon source (CO and CO2) for the catalytic hydrogenation to methane by integration of a Power-to-Gas (PtG) plant. Furthermore, by interconnecting a biomass gasification, an additional biogenic H2 source is provided. Three possible implementation scenarios for a PtG and a biomass gasification plant, including mass and energy balances were analysed. The scenarios stipulate a direct conversion of BFG and BOFG resulting in high shares of N2 in the feed gas of the methanation. Laboratory experimental tests have shown that the methanation of BFG and BOFG is technically possible without prior separation of CO2. The methane-rich product gas can be utilised in the steel plant and substitutes for natural gas. The implementation of these renewable energy sources results in a significant reduction of CO2 emissions between 0.81 and 4.6 Mio tCO2,eq/a. However, the scenarios are significantly limited in terms of available electrolysis plant size, renewable electricity and biomass.

Energies ◽  
2019 ◽  
Vol 12 (13) ◽  
pp. 2615 ◽  
Author(s):  
Guido Marseglia ◽  
Carlo Maria Medaglia ◽  
Alessandro Petrozzi ◽  
Andrea Nicolini ◽  
Franco Cotana ◽  
...  

Renewable energy sources can help the countries to achieve some of the Sustainable Development Goals (SDGs) provided from the recent 2030 Agenda, allowing for clean, secure, reliable and affordable energy. Biomass technology is a relevant renewable energy to contribute to reach a clean and affordable energy production system with important emissions reduction of greenhouse gases (GHG). An innovative technological application of biomass energy consisting of a burner coupled with an external fired gas turbine (EFGT) has been developed for the production of electricity. This paper shows the results of the plant modelling by Aspen Plus environment and preliminary experimental tests; the validation of the proposed model allows for the main parameters to be defined that regulate the energy production plant supplied by woodchips.


Energies ◽  
2020 ◽  
Vol 13 (10) ◽  
pp. 2632 ◽  
Author(s):  
Alexander N. Kozlov ◽  
Nikita V. Tomin ◽  
Denis N. Sidorov ◽  
Electo E. S. Lora ◽  
Victor G. Kurbatsky

The importance of efficient utilization of biomass as renewable energy in terms of global warming and resource shortages are well known and documented. Biomass gasification is a promising power technology especially for decentralized energy systems. Decisive progress has been made in the gasification technologies development during the last decade. This paper deals with the control and optimization problems for an isolated microgrid combining the renewable energy sources (solar energy and biomass gasification) with a diesel power plant. The control problem of an isolated microgrid is formulated as a Markov decision process and we studied how reinforcement learning can be employed to address this problem to minimize the total system cost. The most economic microgrid configuration was found, and it uses biomass gasification units with an internal combustion engine operating both in single-fuel mode (producer gas) and in dual-fuel mode (diesel fuel and producer gas).


Metals ◽  
2018 ◽  
Vol 8 (10) ◽  
pp. 760 ◽  
Author(s):  
Anton Andersson ◽  
Amanda Gullberg ◽  
Adeline Kullerstedt ◽  
Erik Sandberg ◽  
Mats Andersson ◽  
...  

Ore-based ironmaking generates a variety of residues, including slags and fines such as dust and sludges. Recycling of these residues within the integrated steel plant or in other applications is essential from a raw-material efficiency perspective. The main recycling route of off-gas dust is to the blast furnace (BF) via sinter, cold-bonded briquettes and tuyere injection. However, solely relying on the BF for recycling implicates that certain residues cannot be recycled in order to avoid build-up of unwanted elements, such as zinc. By introducing a holistic view on recycling where recycling via other process routes, such as the desulfurization (deS) station and the basic oxygen furnace (BOF), landfilling can be avoided. In the present study, process integration analyses were utilized to determine the most efficient recycling routes for off-gas dust that are currently not recycled within the integrated steel plants of Sweden. The feasibility of recycling was studied in experiments conducted in laboratory, pilot, and full-scale trials in the BF, deS station, and BOF. The process integration analyses suggested that recycling to the BF should be maximized before considering the deS station and BOF. The experiments indicated that the amount of residue that are not recycled could be minimized.


2018 ◽  
Vol 61 ◽  
pp. 00005
Author(s):  
Chawki Ameur menad ◽  
M. Bouchahdane ◽  
Rabah Gomri

Every electrical system in solar panel can fail during electrical faults. In this incidence, high fault current can occur. Such current must be interrupted by a protective system. The research was supported by experimental tests. In work conditions close to real, the numerical relay REF542plus was tested for both instantaneous and extremely inverse definite minimum time IDMT over-current protection functions with the help of CMC 365 injection and test equipment associated to Test Universe software. Protecting hybrid solar panels generating by different renewable energy sources for hydrogen production from over-current is very important for improving the energy efficiency in one hand, and securing the function in critical condition from damage of the solar cells in second hand. The contribution of this research is controlling the over-current in the solar panel for securing the continuation of the hydrogen production from renewable energy sources in short time. The obtained results allowed the observation of the relay’s behavior when subjected to certain faults; where the solar panel keeps producing the hydrogen.


2019 ◽  
pp. 20-24
Author(s):  
Chee Kong Yap ◽  
Chee Wah Yap ◽  
Shih Hao Tony Peng ◽  
Uma Rani Sinniah ◽  
Chee Seng Leow ◽  
...  

This paper reviews the potentials and challenges of using Oil Palm Biomass Wastes (OPBW) as Renewable Energy (RE) source in Malaysia. The OPBW mainly includes Palm Oil Mill Effluent (POME) and Empty Fruit Bunches (EFB). From the present review, the major potentials of OPBW consist of their large availability, being a major sources of lignocellulosic materials for industrial, being economically viable, being a solution to the disposal problem and cost-benefit. The challenges of using OPBW as RE source are being a high dependency on the availability of the OPWB, unfair subsidies given to RE based fuel, the use of POME that produces methane, substantial amount of under-utilization of lignocellulosic wastes from OPBW, the need for further studies on the correct selection of generation plant size, and not economically competitive. Overall, the challenge is to make the OPBWs as a reliable, profitable and sustainable RE industry. Based on the present review mainly from Malaysia, there are definite potentials/advantages of using OPBW as RE source in Malaysia. Ways and suggestions on these practical issues on how to reduce problems facing the use of OPBW as RE source in Malaysia should be investigated and addressed before the large scale utilization of OPBW as RE source can be anticipated in Malaysia.


IEE Review ◽  
1991 ◽  
Vol 37 (4) ◽  
pp. 152
Author(s):  
Kenneth Spring

Sign in / Sign up

Export Citation Format

Share Document