Effect of canola infection with clubroot disease on oviposition by the bertha armyworm

2016 ◽  
Author(s):  
Chaminda De Silva Weeraddana
Agronomy ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 792
Author(s):  
Haohui Yang ◽  
Yuxiang Yuan ◽  
Xiaochun Wei ◽  
Xiaohui Zhang ◽  
Haiping Wang ◽  
...  

Raphanus sativus, an important cruciferous vegetable, has been increasingly affected by clubroot disease. Establishing a stable and accurate resistance identification method for screening resistant germplasms is urgently needed in radish. In this study, the influence of inoculum concentration, inoculation methods, and pH of the substrate on disease occurrence was studied. The result showed that the disease index (DI) was highest at 2 × 108 spores/mL, the efficiency of two-stage combined inoculation methods was higher than others, and pH 6.5 was favorable for the infection of P. brassicae. By using this new method, DIs of 349 radish germplasms varying from 0.00 to 97.04, presented significantly different levels of resistance. Analysis showed that 85.06% germplasms from China were susceptible to P. brassicae, whilst 28 accessions were resistant and mainly distributed in east, southwest, northwest, and south-central China. Most of the exotic germplasms were resistant. Repeated experiments verified the stability and reliability of the method and the identity of germplasm resistance. In total, 13 immune, 5 highly resistant and 21 resistant radish accessions were identified. This study provides an original clubroot-tolerance evaluation technology and valuable materials for the development of broad-spectrum resistant varieties for sustainable clubroot management in radish and other cruciferous crops.


1992 ◽  
Vol 61 (3) ◽  
pp. 527-535 ◽  
Author(s):  
Yoichi TORIGOE ◽  
Tetsuro AMANO ◽  
Kei OGAWA ◽  
Michikazu FUKUHARA

2004 ◽  
Vol 85 (1) ◽  
pp. 33-37 ◽  
Author(s):  
Magali Merkx-Jacques ◽  
Jacqueline C. Bede

Abstract Plants exhibit remarkable plasticity in their ability to differentiate between herbivorous insect species and subtly adjust their defense responses to target distinct pests. One key mechanism used by plants to recognize herbivorous caterpillars is elicitors present in their oral secretions; however, these elicitors not only cause the induction of plant defenses but recent evidence suggests that they may also suppress plant responses. The absence of “expected changes” in induced defense responses of insect-infested plants has been attributed to hydrogen peroxide produced by caterpillar salivary glucose oxidase (GOX). Activity of this enzyme is variable among caterpillar species; it was detected in two generalist caterpillars, the beet armyworm (Spodoptera exigua) and the bertha armyworm (Mamestra configurata), but not in other generalist or specialist caterpillar species tested. In the beet armyworm, GOX activity fluctuated over larval development with high activity associated with the salivary glands of fourth instars. Larval salivary GOX activity of the beet armyworm and the bertha armyworm was observed to be significantly higher in caterpillars reared on artificial diet as compared with those reared on Medicago truncatula plants. This implies that a factor in the diet is involved in the regulation of caterpillar salivary enzyme activity. Therefore, plant diet may be regulating caterpillar oral elicitors that are involved in the regulation of plant defense responses: our goal is to understand these two processes.


2014 ◽  
Vol 36 (sup1) ◽  
pp. 85-98 ◽  
Author(s):  
Elke Diederichsen ◽  
Martin Frauen ◽  
Jutta Ludwig-Müller

Genome ◽  
2021 ◽  
Author(s):  
Muhammad Jakir Hasan ◽  
Swati Megha ◽  
Habibur Rahman

Clubroot disease, caused by Plasmodiophora brassicae, affects Brassica oilseed and vegetable production worldwide. This review is focused on various aspects of clubroot disease and its management, including understanding the pathogen and resistance in the host plants. Advances in genetics, molecular biology techniques and ‘omics’ research have helped to identify several major loci, QTL and genes from the Brassica genomes involved in the control of clubroot resistance. Transcriptomic studies have helped to extend our understanding of the mechanism of infection by the pathogen and the molecular basis of resistance/susceptibility in the host plants. A comprehensive understanding of the clubroot disease and host resistance would allow developing a better strategy by integrating the genetic resistance with cultural practices to manage this disease from a long-term perspective.


1988 ◽  
Vol 120 (5) ◽  
pp. 401-413 ◽  
Author(s):  
W. J. Turnock

AbstractPopulations of larvae of the bertha armyworm, Mamestra configurata Wlk., in four physiographic regions of Manitoba showed similar trends over time: a decline from the outbreak of 1971–1972 to very low densities in 1975–1977, an increase to a peak during the years 1979–1981, and a subsequent decline. During the period of peak larval populations, brief (1 or 2 years) outbreaks [at least some fields with > 20 larvae per square metre) occurred at five locations in two regions, the Swan River Plain and the Valley River Plain, but not in the Western Uplands or the Manitoba Lowlands. In the first two regions, larval densities rose rapidly (from < 1.6 to > 13.8/m2) in 1 year. Although the general trend of population density was similar, there were differences in density among and within regions, and in the timing, severity, and duration of peak populations. Two parasitoids (Banchus flavescens Cress., Athrycia cinerea (Coq.)) and two pathogens (a nuclear polyhedrosis virus (NPV) and fungi of the Entomophthorales) occurred regularly in larval populations. Of these, B. flavescens had the highest constancy among collections and may help to keep bertha armyworm populations at low densities. NPV was rarely found among larvae from low-density populations but appeared in all populations that reached outbreak levels. No single biotic agent could be associated with the population declines because of multiple parasitism and the difficulty in partitioning mortality when only a single sample could be taken. The rapid increase of bertha armyworm larvae from very low to outbreak levels in 1 year will prevent predictions of outbreaks from being based on larval densities in the preceding year.


Plant Disease ◽  
2021 ◽  
Author(s):  
Nazanin Zamani-Noor ◽  
Sinja Brand ◽  
Hans-Peter Soechting

A series of greenhouse experiments was conducted to evaluate the effect of Plasmodiophora brassicae virulence on clubroot development and propagation of resting spores in 86 plant species from 19 botanical families. Plants were artificially inoculated with two isolates of P. brassicae, which were either virulent on clubroot-resistant oilseed rape cv. Mendel (P1 (+)) or avirulent on this cultivar (P1). Clubroot severity and the number of resting spores inside the roots were assessed 35 days post inoculation. Typical clubroot symptoms were observed only in the Brassicaceae family. P1 (+)-inoculated species exhibited more severe symptoms (2 to 10–fold more severe), bigger galls (1.1 to 5.8 fold heavier) and higher number of resting spores than the P1-inoculated plants. Among all Brassica species, Bunias orientalis, Coronopus squamatus and Raphanus sativus were fully resistant against both isolates, while Camelina sativa, Capsella bursa-pastoris, Coincya momensis, Descurainia sophia, Diplotaxis muralis, Erucastrum gallicum, Neslia paniculata, Sinapis alba, S. arvensis, Sisymbrium altissimum, S. loeselii and Thlaspi arvense were highly susceptible. Conringia orientalis, Diplotaxis tenuifolia, Hirschfeldia incana, Iberis amara, Lepidium campestre and Neslia paniculata were completely or partially resistant to P1-isolate but highly susceptible to P1 (+). These results propose that the basis for resistance in these species may be similar to that found in some commercial cultivars, and that these species could contribute to the build-up of inoculum of virulent pathotypes. Furthermore, the pathogen DNA was detected in Alopecurus myosuroides, Phacelia tanacatifolia, Papaver rhoeas and Pisum sativum. It can concluded that the number and diversity of hosts for P. brassicae are greater than previously reported.


2018 ◽  
pp. 97-100
Author(s):  
A. A. Ushakov ◽  
L. L. Bondareva ◽  
I. A. Engalycheva

Clubroot disease (causative organism Plasmodiophora brassicae Wor.) is among the most economically important and harmful diseases of the cole crops, and the damage due to this disease may reach up to 50-75% of the yield and even 100% in epiphytotics years. Even resistant varieties become susceptible over the years, because of appearance of the new pathogen races and change of climatic conditions in the main growing areas of the crop. In this context the Laboratory of Plant Immunity and Protection, of Federal State Budgetary Scientific Institution “Federal Scientific Vegetable Center” implements continuous phytoimmunological evaluation of collection and selection specimens and also directional material rather than just annual monitoring of causative organism dissemination in order to find new resistance sources. For this purpose an artificial infection background is used: compost obtained from decomposed nodules on the cabbage roots affected by clubroot disease (infection load 105-106 spores/cm3). The resistance of white cabbage varieties was evaluated during the harvesting period using five-point score of the root system damage, which formed the basis for categorization into resistance groups. For the analysis of artificial background intensity and specimen ranking the individual plants of the white cabbage variety Slava 1305, which is a susceptibility standard, were randomly planted in the entire area of the infection background. The impact of atmospheric conditions in the study year on the results of phytopathological evaluation of cabbage selection specimens against the infection background is demonstrated. Under unfavorable conditions for pathogen development (2014) the most specimens (74%) were categorized as relatively resistant, while in favourable for pathogen year 2015 relatively resistant specimens comprised only 5% of the total number of studied specimens. Since the same specimen may show different level of resistance depending on the year conditions, the stability of character manifestation is the important criterion for identification of the resistance resources. Phytopathological evaluation aimed on selection of clubroot-resistant forms in the Moscow region should last for at least three years even with the use of infection background. Long-lasting evaluation showed that the strains No 234/15,140/14,216/17 exhibiting high resistance to clubroot against artificial infection background regardless of the year conditions are the most valuable for selection. The resistance of white cabbage selection varieties to clubroot disease was studied against the infection background.


Sign in / Sign up

Export Citation Format

Share Document