scholarly journals A New Identification Method Reveals the Resistance of an Extensive-Source Radish Collection to Plasmodiophora brassicae Race 4

Agronomy ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 792
Author(s):  
Haohui Yang ◽  
Yuxiang Yuan ◽  
Xiaochun Wei ◽  
Xiaohui Zhang ◽  
Haiping Wang ◽  
...  

Raphanus sativus, an important cruciferous vegetable, has been increasingly affected by clubroot disease. Establishing a stable and accurate resistance identification method for screening resistant germplasms is urgently needed in radish. In this study, the influence of inoculum concentration, inoculation methods, and pH of the substrate on disease occurrence was studied. The result showed that the disease index (DI) was highest at 2 × 108 spores/mL, the efficiency of two-stage combined inoculation methods was higher than others, and pH 6.5 was favorable for the infection of P. brassicae. By using this new method, DIs of 349 radish germplasms varying from 0.00 to 97.04, presented significantly different levels of resistance. Analysis showed that 85.06% germplasms from China were susceptible to P. brassicae, whilst 28 accessions were resistant and mainly distributed in east, southwest, northwest, and south-central China. Most of the exotic germplasms were resistant. Repeated experiments verified the stability and reliability of the method and the identity of germplasm resistance. In total, 13 immune, 5 highly resistant and 21 resistant radish accessions were identified. This study provides an original clubroot-tolerance evaluation technology and valuable materials for the development of broad-spectrum resistant varieties for sustainable clubroot management in radish and other cruciferous crops.

Plant Disease ◽  
2014 ◽  
Vol 98 (5) ◽  
pp. 687-687 ◽  
Author(s):  
L. Ren ◽  
X. P. Fang ◽  
C. C. Sun ◽  
K. R. Chen ◽  
F. Liu ◽  
...  

Shepherd's purse (Capsella bursa-pastoris (L.) Medicus) is an edible and wild medicinal plant widely distributed in China. This plant has been cultivated in Shanghai, China, since the end of the 19th century. Infection of C. bursa-pastoris by Plasmodiophora brassicae, the causal agent of clubroot disease on Brassica spp. has been reported in Korea (2), but is not known to occur in China. In February of 2011, stunted and wilted shepherd's purse (SP) plants were observed in a field planted to oilseed rapes (B. napus) in Sichuan Province of China. Symptomatic SP plants also exhibited root galls. Disease incidence was 6.2% and 100% for SP and B. napus, respectively. Root galls on diseased SP plants were collected for pathogen identification. Many resting spores were observed when the root galls were examined under a light microscope. The resting spores were circular in shape, measuring 2.0 to 3.1 μm in diameter (average 2.6 μm). PCR amplification was conducted to confirm the pathogen. DNA was extracted from root galls and healthy roots (control) of SP. Two primers, TC2F (5′-AAACAACGAGTCAGCTTGAATGCTAGTGTG-3′) and TC2R (5′-CTTTAGTTGTGTTTCGGCTAGGATGGTTCG-3′) were used to detect P. brassicae (1). No PCR amplifications were observed with the control DNA as template. A fragment of the expected size (approximately 520 bp) was obtained when DNA was amplified from diseased roots of SP. These results suggest that the pathogen in the galled roots of SP is P. brassicae. Pathogenicity of P. brassicae in SP was tested on plants of both SP and Chinese cabbage (CC) (B. campestris ssp. pekinensis). A resting spore suspension prepared from naturally infected SP roots was mixed with a sterilized soil in two plastic pots, resulting in a final concentration of 5 × 106 spores/g soil. Soil treated with the same volume of sterile water was used as a control. Seeds of SP and CC were pre-germinated on moist filter paper for 2 days (20°C) and seeded into the infested and control pots, one seed per pot for planted for CC and four seeds per pot for SP. The pots were placed in a chamber at 15 to 25°C under 12 h light and 12 h dark. Plants in each pot were uprooted after 4 weeks and the roots of each plant were washed under tap water and rated for clubroot disease. No disease symptoms were observed in the control treatments of SP or CC. Plants of both species showed symptoms of clubroot, with the disease incidence of 62.5% and 100% on SP and CC, respectively. The pathogen was isolated from diseased roots of each plant and confirmed as P. brassicae based on morphological characteristics and PCR detection. To our knowledge, this is the first report of clubroot disease on C. bursa-pastoris in Sichuan Province of China. This finding suggests that it may be necessary to manage C. bursa-pastoris in cruciferous vegetable (cabbage, turnip) and oilseed rape production fields. References: (1) T. Cao et al. Plant Dis. 91:80, 2007. (2) W. G. Kim et al. Microbiology 39:233, 2011.


Genome ◽  
2021 ◽  
Author(s):  
Muhammad Jakir Hasan ◽  
Swati Megha ◽  
Habibur Rahman

Clubroot disease, caused by Plasmodiophora brassicae, affects Brassica oilseed and vegetable production worldwide. This review is focused on various aspects of clubroot disease and its management, including understanding the pathogen and resistance in the host plants. Advances in genetics, molecular biology techniques and ‘omics’ research have helped to identify several major loci, QTL and genes from the Brassica genomes involved in the control of clubroot resistance. Transcriptomic studies have helped to extend our understanding of the mechanism of infection by the pathogen and the molecular basis of resistance/susceptibility in the host plants. A comprehensive understanding of the clubroot disease and host resistance would allow developing a better strategy by integrating the genetic resistance with cultural practices to manage this disease from a long-term perspective.


Plant Disease ◽  
2021 ◽  
Author(s):  
Nazanin Zamani-Noor ◽  
Sinja Brand ◽  
Hans-Peter Soechting

A series of greenhouse experiments was conducted to evaluate the effect of Plasmodiophora brassicae virulence on clubroot development and propagation of resting spores in 86 plant species from 19 botanical families. Plants were artificially inoculated with two isolates of P. brassicae, which were either virulent on clubroot-resistant oilseed rape cv. Mendel (P1 (+)) or avirulent on this cultivar (P1). Clubroot severity and the number of resting spores inside the roots were assessed 35 days post inoculation. Typical clubroot symptoms were observed only in the Brassicaceae family. P1 (+)-inoculated species exhibited more severe symptoms (2 to 10–fold more severe), bigger galls (1.1 to 5.8 fold heavier) and higher number of resting spores than the P1-inoculated plants. Among all Brassica species, Bunias orientalis, Coronopus squamatus and Raphanus sativus were fully resistant against both isolates, while Camelina sativa, Capsella bursa-pastoris, Coincya momensis, Descurainia sophia, Diplotaxis muralis, Erucastrum gallicum, Neslia paniculata, Sinapis alba, S. arvensis, Sisymbrium altissimum, S. loeselii and Thlaspi arvense were highly susceptible. Conringia orientalis, Diplotaxis tenuifolia, Hirschfeldia incana, Iberis amara, Lepidium campestre and Neslia paniculata were completely or partially resistant to P1-isolate but highly susceptible to P1 (+). These results propose that the basis for resistance in these species may be similar to that found in some commercial cultivars, and that these species could contribute to the build-up of inoculum of virulent pathotypes. Furthermore, the pathogen DNA was detected in Alopecurus myosuroides, Phacelia tanacatifolia, Papaver rhoeas and Pisum sativum. It can concluded that the number and diversity of hosts for P. brassicae are greater than previously reported.


2018 ◽  
pp. 97-100
Author(s):  
A. A. Ushakov ◽  
L. L. Bondareva ◽  
I. A. Engalycheva

Clubroot disease (causative organism Plasmodiophora brassicae Wor.) is among the most economically important and harmful diseases of the cole crops, and the damage due to this disease may reach up to 50-75% of the yield and even 100% in epiphytotics years. Even resistant varieties become susceptible over the years, because of appearance of the new pathogen races and change of climatic conditions in the main growing areas of the crop. In this context the Laboratory of Plant Immunity and Protection, of Federal State Budgetary Scientific Institution “Federal Scientific Vegetable Center” implements continuous phytoimmunological evaluation of collection and selection specimens and also directional material rather than just annual monitoring of causative organism dissemination in order to find new resistance sources. For this purpose an artificial infection background is used: compost obtained from decomposed nodules on the cabbage roots affected by clubroot disease (infection load 105-106 spores/cm3). The resistance of white cabbage varieties was evaluated during the harvesting period using five-point score of the root system damage, which formed the basis for categorization into resistance groups. For the analysis of artificial background intensity and specimen ranking the individual plants of the white cabbage variety Slava 1305, which is a susceptibility standard, were randomly planted in the entire area of the infection background. The impact of atmospheric conditions in the study year on the results of phytopathological evaluation of cabbage selection specimens against the infection background is demonstrated. Under unfavorable conditions for pathogen development (2014) the most specimens (74%) were categorized as relatively resistant, while in favourable for pathogen year 2015 relatively resistant specimens comprised only 5% of the total number of studied specimens. Since the same specimen may show different level of resistance depending on the year conditions, the stability of character manifestation is the important criterion for identification of the resistance resources. Phytopathological evaluation aimed on selection of clubroot-resistant forms in the Moscow region should last for at least three years even with the use of infection background. Long-lasting evaluation showed that the strains No 234/15,140/14,216/17 exhibiting high resistance to clubroot against artificial infection background regardless of the year conditions are the most valuable for selection. The resistance of white cabbage selection varieties to clubroot disease was studied against the infection background.


2015 ◽  
Vol 11 (4) ◽  
pp. 4077-4095
Author(s):  
J. Zheng ◽  
Z. Hua ◽  
Y. Liu ◽  
Z. Hao

Abstract. The annual temperature anomalies in South Central China from 1850 to 2008 were reconstructed by synthesizing three types of proxies: the spring phenodate of plants recorded in historical personal diaries and observations; the snowfall days extracted from historical archives and observed at meteorological stations; and five tree-ring width chronologies. The instrumental observation data and the leave-one-out method were used for calibration and validation. The results show that the temperature series in South Central China exhibits inter-annual and decadal fluctuations since 1850 (e.g., quasi-15 years and quasi-35 years fluctuations). The first three cold decades were the 1860s, 1890s and 1950s, while 1893 was the coldest year. Except that the three warm decades occurred around the 1850s, 1870s and 1960s, recent warm decades from the 1990s to the 2000s represent unprecedented warming since 1850.


2020 ◽  
Vol 110 (10) ◽  
pp. 1704-1712 ◽  
Author(s):  
Lijiang Liu ◽  
Li Qin ◽  
Zhuqing Zhou ◽  
Wilhelmina G. H. M. Hendriks ◽  
Shengyi Liu ◽  
...  

As a soilborne protist pathogen, Plasmodiophora brassicae causes the devastating clubroot disease on Brassicaceae crops worldwide. Due to its intracellular obligate biotrophic nature, the life cycle of P. brassicae is still not fully understood. Here, we used fluorescent probe-based confocal microscopy and transmission electron microscopy (TEM) to investigate the infection process of P. brassicae on the susceptible host Arabidopsis under controlled conditions. We found that P. brassicae can initiate the primary infection in both root hairs and epidermal cells, producing the uninucleate primary plasmodium at 1 day postinoculation (dpi). After that, the developed multinucleate primary plasmodium underwent condensing and cytoplasm cleavage into uninucleate zoosporangia from 1 to 4 dpi. This was subsequently followed by the formation of multinucleate zoosporangia and the production of secondary zoospores within zoosporangium. Importantly, the secondary zoospores performed a conjugation in the root epidermal cells after their release. TEM revealed extensive uninucleate secondary plasmodium in cortical cells at 8 dpi, indicating the establishment of the secondary infection. The P. brassicae subsequently developed into binucleate, quadrinucleate, and multinucleate secondary plasmodia from 10 to 15 dpi, during which the clubroot symptoms appeared. The uninucleate resting spores were first observed in the cortical cells at 24 dpi, marking the completion of a life cycle. We also provided evidence that the secondary infection of P. brassicae may represent the diploid sexual life stage. From these findings, we propose a refined life cycle of P. brassicae which will contribute to understanding of the complicated infection biology of P. brassicae.


Burns ◽  
2014 ◽  
Vol 40 (1) ◽  
pp. 150-156 ◽  
Author(s):  
Bo Zhou ◽  
Xiao Zhou ◽  
Li-zhi Ouyang ◽  
Xiao-yuan Huang ◽  
Pi-hong Zhang ◽  
...  

Plant Disease ◽  
2012 ◽  
Vol 96 (7) ◽  
pp. 997-1000 ◽  
Author(s):  
Dennis A. Johnson

The stability of slow-rusting resistance to Puccinia asparagi in several asparagus cultivars was evaluated in two replicated field trials. Rust epidemics were monitored in each trial for 8 years spanning a period of 13 years (1983–1990 and 1987–1995). Inoculum of P. asparagi, an autoecious macrocyclic rust, originated each year as teliospores. In the first trial, the cultivars Jersey Titan, Jersey Centennial, Jersey Giant, Delmonte-361, and UC-157 had consistently lower area under the disease progress curve (AUDPC) values than Wash T2 and WSU-1. Cultivar Mary Washington was intermediate between the two groups of resistant and susceptible cultivars in 6 of 8 years. Jersey Titan consistently ranked number 1 for resistance with the lowest AUDPC values all 8 years. In the second trial, Jersey Giant, Delmonte-361, and UC-157 had consistently lower AUDPC values than Larac, Gynlim, Cito, Largo 17-3, and Franklim in each of 8 years. Jersey Giant, Delmonte-361, and UC-157 always ranked low (1, 2, or 3) for AUDPC. A shift from rust-susceptible to rust-resistant asparagus cultivars began in central Washington around 1996. In 2011, resistant cultivars made up nearly 96% of the asparagus plantings. From 1996 to 2011, rust was not considered a problem in commercial fields with slow-rusting resistant cultivars. Use of durable, slow-rusting cultivars, along with sanitation practices that reduced levels of aecia in nonharvested nurseries and on volunteer asparagus plants and judicious irrigation management, has effectively managed asparagus rust in commercial fields for at least 29 years in south-central Washington.


Sign in / Sign up

Export Citation Format

Share Document