scholarly journals Towards Sentence-Level Brain Decoding with Distributed Representations

Author(s):  
Jingyuan Sun ◽  
Shaonan Wang ◽  
Jiajun Zhang ◽  
Chengqing Zong

Decoding human brain activities based on linguistic representations has been actively studied in recent years. However, most previous studies exclusively focus on word-level representations, and little is learned about decoding whole sentences from brain activation patterns. This work is our effort to mend the gap. In this paper, we build decoders to associate brain activities with sentence stimulus via distributed representations, the currently dominant sentence representation approach in natural language processing (NLP). We carry out a systematic evaluation, covering both widely-used baselines and state-of-the-art sentence representation models. We demonstrate how well different types of sentence representations decode the brain activation patterns and give empirical explanations of the performance difference. Moreover, to explore how sentences are neurally represented in the brain, we further compare the sentence representation’s correspondence to different brain areas associated with high-level cognitive functions. We find the supervised structured representation models most accurately probe the language atlas of human brain. To the best of our knowledge, this work is the first comprehensive evaluation of distributed sentence representations for brain decoding. We hope this work can contribute to decoding brain activities with NLP representation models, and understanding how linguistic items are neurally represented.

2016 ◽  
Author(s):  
Antonio Benítez-Burraco ◽  
Wanda Lattanzi ◽  
Elliot Murphy

AbstractAutism spectrum disorders (ASD) are pervasive neurodevelopmental disorders entailing social and cognitive deficits, including marked problems with language. Numerous genes have been associated with ASD, but it is unclear how language deficits arise from gene mutation or dysregulation. It is also unclear why ASD shows such high prevalence within human populations. Interestingly, the emergence of a modern faculty of language has been hypothesised to be linked to changes in the human brain/skull, but also to the process of self-domestication of the human species. It is our intention to show that people with ASD exhibit less marked domesticated traits at the morphological, physiological, and behavioural levels. We also discuss many ASD candidates represented among the genes known to be involved in the domestication syndrome (the constellation of traits exhibited by domesticated mammals, which seemingly results from the hypofunction of the neural crest) and among the set of genes involved in language function closely connected to them. Moreover, many of these genes show altered expression profiles in the brain of autists. In addition, some candidates for domestication and language-readiness show the same expression profile in people with ASD and chimps in different brain areas involved in language processing. Similarities regarding the brain oscillatory behaviour of these areas can be expected too. We conclude that ASD may represent an abnormal ontogenetic itinerary for the human faculty of language resulting in part from changes in genes important for the domestication syndrome and, ultimately, from the normal functioning of the neural crest.


2017 ◽  
pp. 3-12
Author(s):  
Riitta Hari ◽  
Aina Puce

Neuronal communication in the brain is associated with minute electrical currents that give rise to both electrical potentials on the scalp (measurable by means of electroencephalography [EEG]) and magnetic fields outside the head (measurable by magnetoencephalography [MEG]). Both MEG and EEG are noninvasive neurophysiological methods used to study brain dynamics, that is temporal changes in the activation patterns, and sequences in signal progression. Differences between MEG and EEG mainly reflect differences in the spread of electric and magnetic fields generated by the same electric currents in the human brain. This chapter provides an overall description of the main principles of MEG and EEG and provides background for the following chapters in this and subsequent sections.


2020 ◽  
Vol 2020 ◽  
pp. 1-7
Author(s):  
Yarui Wei ◽  
Ling Mei ◽  
Xiaojing Long ◽  
Xiaoxiao Wang ◽  
Yanjun Diao ◽  
...  

Background. Clinical and experimental data suggest that ultrasound stimulation (US) at acupoints can produce similar effective treatment compared to manual acupuncture (MA). Although the brain activation to MA at acupoints is investigated by numerous studies, the brain activation to US at acupoints remains unclear. Methods. In the present work, we employed task state functional magnetic resonance imaging (fMRI) to explore the human brain’s activation to US and MA at ST 36 (Zusanli) which is one of the most commonly used acupoints in acupuncture-related studies. 16 healthy subjects underwent US and MA procedures in an interval of more than one week. On-off block design stimulation was used for the recording of fMRI-related brain patterns. Results. Both US and MA at ST 36 produced activations in somatosensory and limbic/paralimbic regions (postcentral gyrus, insula, middle prefrontal cortex, and anterior cingulate cortex). Only US at ST 36 produced a significant signal increase in the inferior parietal lobule and decrease in the posterior cingulate cortex, whereas MA at ST 36 produced a significant signal increase in the lentiform nucleus and cerebellum. Conclusions. Our results indicate that US may be a possible noninvasive alternative method to MA due to its similar activation patterns.


2002 ◽  
Vol 14 (7) ◽  
pp. 994-1017 ◽  
Author(s):  
Alice Mado Proverbio ◽  
Barbara Čok ◽  
Alberto Zani

The aim of the present study was to investigate how multiple languages are represented in the human brain. Event-related brain potentials (ERPs) were recorded from right-handed polyglots and monolinguals during a task involving silent reading. The participants in the experiment were nine Italian monolinguals and nine Italian/Slovenian bilinguals of a Slovenian minority in Trieste; the bilinguals, highly fluent in both languages, had spoken both languages since birth. The stimuli were terminal words that would correctly complete a short, meaningful, previously shown sentence, or else were semantically or syntactically incorrect. The task consisted in deciding whether the sentences were well formed or not, giving the response by pressing a button. Both groups read the same set of 200 Italian sentences to compare the linguistic processing, while the bilinguals also received a set of 200 Slovenian sentences, comparable in complexity and length, to compare the processing of the two languages within the group. For the bilinguals, the ERP results revealed a strong, left-sided activation, reflected by the N1 component, of the occipito-temporal regions dedicated to orthographic processing, with a latency of about 150 msec for Slovenian words, but bilateral activation of the same areas for Italian words, which was also displayed by topographical mapping. In monolinguals, semantic error produced a long-lasting negative response (N2 and N4) that was greater over the right hemisphere, whereas syntactic error activated mostly the left hemisphere. Conversely, in the bilinguals, semantic incongruence resulted in greater response over the left hemisphere than over the right. In this group, the P615 syntactical error responses were of equal amplitude on both hemispheres for Italian words and greater on the right side for Slovenian words. The present findings support the view that there are inter- and intrahemispheric brain activation asymmetries when monolingual and bilingual speakers comprehend written language. The fact that the bilingual speakers in the present study were highly fluent and had acquired both languages in early infancy suggests that the brain activation patterns do not depend on the age of acquisition or the fluency level, as in the case of late, not-so-proficient L2 language learners, but on the functional organization of the bilinguals' brain due to polyglotism and based on brain plasticity.


2016 ◽  
Vol 12 ◽  
pp. P396-P396
Author(s):  
Megan A. Hird ◽  
Kristin A. Vesely ◽  
Nathan C. Churchill ◽  
Corinne E. Fischer ◽  
Gary Naglie ◽  
...  

2020 ◽  
Author(s):  
Sreejan Kumar ◽  
Cameron T. Ellis ◽  
Thomas O’Connell ◽  
Marvin M Chun ◽  
Nicholas B. Turk-Browne

AbstractThe extent to which brain functions are localized or distributed is a foundational question in neuroscience. In the human brain, common fMRI methods such as cluster correction, atlas parcellation, and anatomical searchlight are biased by design toward finding localized representations. Here we introduce the functional searchlight approach as an alternative to anatomical searchlight analysis, the most commonly used exploratory multivariate fMRI technique. Functional searchlight removes any anatomical bias by grouping voxels based only on functional similarity and ignoring anatomical proximity. We report evidence that visual and auditory features from deep neural networks and semantic features from a natural language processing model are more widely distributed across the brain than previously acknowledged. This approach provides a new way to evaluate and constrain computational models with brain activity and pushes our understanding of human brain function further along the spectrum from strict modularity toward distributed representation.


Author(s):  
Marta Kutas ◽  
Kara D. Federmeier

The intact human brain is the only known system that can interpret and respond to various visual and acoustic patterns. Therefore, unlike researchers of other cognitive phenomena, (neuro)psycholinguists cannot avail themselves of invasive techniques in non-human animals to uncover the responsible mechanisms in the large parts of the (human) brain that have been implicated in language processing. Engagement of these different anatomical areas does, however, generate distinct patterns of biological activity (such as ion flow across neural membranes) that can be recorded inside and outside the heads of humans as they quickly, often seamlessly, and without much conscious reflection on the computations and linguistic regularities involved, understand spoken, written, or signed sentences. This article summarizes studies of event-related brain potentials and sentence processing. It discusses electrophysiology, language and the brain, processing language meaning, context effects in meaning processing, non-literal language processing, processing language form, parsing, slow potentials and the closure positive shift, and plasticity and learning.


2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Yongxin Li ◽  
Feiyan Chen ◽  
Wenhua Huang

The human brain has an enormous capacity to adapt to a broad variety of environmental demands. Previous studies in the field of abacus training have shown that this training can induce specific changes in the brain. However, the neural mechanism underlying these changes remains elusive. Here, we reviewed the behavioral and imaging findings of comparisons between abacus experts and average control subjects and focused on changes in activation patterns and changes in brain structure. Finally, we noted the limitations and the future directions of this field. We concluded that although current studies have provided us with information about the mechanisms of abacus training, more research on abacus training is needed to understand its neural impact.


2018 ◽  
Vol 27 (6) ◽  
pp. 462-469 ◽  
Author(s):  
Merim Bilalić

The performance of experts seems almost effortless. The neural-efficiency hypothesis takes this into account, suggesting that because of practice and automatization of procedures, experts require fewer brain resources. Here, I argue that the way the brain accommodates complex skills does indeed have to do with the nature of experts’ performance. However, instead of exhibiting less brain activation, experts’ performance actually engages more brain areas. Behind the seemingly effortless performance of experts lies a complex cognitive system that relies on knowledge about the domain of expertise. Unlike novices, who need to execute one process at a time, experts are able to recognize an object, retrieve its function, and connect it to another object simultaneously. The expert brain deals with this computational burden by engaging not only specific brain areas in one hemisphere but also the same (homologous) area in the opposite hemisphere. This phenomenon, which I call the double take of expertise, has been observed in a number of expertise domains. I describe it here in object- and pattern-recognition tasks in the domain of chess. I also discuss the importance of the study of expertise for our understanding of the human brain in general.


2021 ◽  
Vol 15 ◽  
Author(s):  
Katsumasa Shinozuka ◽  
Kiyomitsu Niioka ◽  
Tatsuya Tokuda ◽  
Yasushi Kyutoku ◽  
Koki Okuno ◽  
...  

In the midst of globalization, English is regarded as an international language, or Lingua Franca, but learning it as a second language (L2) remains still difficult to speakers of other languages. This is true especially for the speakers of languages distantly related to English such as Japanese. In this sense, exploring neural basis for translation between the first language (L1) and L2 is of great interest. There have been relatively many previous researches revealing brain activation patterns during translations between L1 and English as L2. These studies, which focused on language translation with close or moderate linguistic distance (LD), have suggested that the Broca area (BA 44/45) and the dorsolateral prefrontal cortex (DLPFC; BA 46) may play an important role on translation. However, the neural mechanism of language translation between Japanese and English, having large LD, has not been clarified. Thus, we used functional near infrared spectroscopy (fNIRS) to investigate the brain activation patterns during word translation between Japanese and English. We also assessed the effects of translation directions and word familiarity. All participants’ first language was Japanese and they were learning English. Their English proficiency was advanced or elementary. We selected English and Japanese words as stimuli based on the familiarity for Japanese people. Our results showed that the brain activation patterns during word translation largely differed depending on their English proficiency. The advanced group elicited greater activation on the left prefrontal cortex around the Broca’s area while translating words with low familiarity, but no activation was observed while translating words with high familiarity. On the other hand, the elementary group evoked greater activation on the left temporal area including the superior temporal gyrus (STG) irrespective of the word familiarity. These results suggested that different cognitive process could be involved in word translation corresponding to English proficiency in Japanese learners of English. These difference on the brain activation patterns between the advanced and elementary group may reflect the difference on the cognitive loads depending on the levels of automatization in one’s language processing.


Sign in / Sign up

Export Citation Format

Share Document