scholarly journals A Fuzzy Set Based Approach for Rating Bias

Author(s):  
Mingming Li ◽  
Jiao Dai ◽  
Fuqing Zhu ◽  
Liangjun Zang ◽  
Songlin Hu ◽  
...  

In recommender systems, the user uncertain preference results in unexpected ratings. This paper makes an initial attempt in integrating the influence of user uncertain degree into the matrix factorization framework. Specifically, a fuzzy set of like for each user is defined, and the membership function is utilized to measure the degree of an item belonging to the fuzzy set. Furthermore, to enhance the computational effect on sparse matrix, the uncertain preference is formulated as a side-information for fusion. Experimental results on three real-world datasets show that the proposed approach produces stable improvements compared with others.

Author(s):  
Guibing Guo ◽  
Enneng Yang ◽  
Li Shen ◽  
Xiaochun Yang ◽  
Xiaodong He

Trust-aware recommender systems have received much attention recently for their abilities to capture the influence among connected users. However, they suffer from the efficiency issue due to large amount of data and time-consuming real-valued operations. Although existing discrete collaborative filtering may alleviate this issue to some extent, it is unable to accommodate social influence. In this paper we propose a discrete trust-aware matrix factorization (DTMF) model to take dual advantages of both social relations and discrete technique for fast recommendation. Specifically, we map the latent representation of users and items into a joint hamming space by recovering the rating and trust interactions between users and items. We adopt a sophisticated discrete coordinate descent (DCD) approach to optimize our proposed model. In addition, experiments on two real-world datasets demonstrate the superiority of our approach against other state-of-the-art approaches in terms of ranking accuracy and efficiency.


Author(s):  
Chenwei Cai ◽  
Ruining He ◽  
Julian McAuley

Dealing with sparse, long-tailed datasets, and cold-start problems is always a challenge for recommender systems. These issues can partly be dealt with by making predictions not in isolation, but by leveraging information from related events; such information could include signals from social relationships or from the sequence of recent activities. Both types of additional information can be used to improve the performance of state-of-the-art matrix factorization-based techniques. In this paper, we propose new methods to combine both social and sequential information simultaneously, in order to further improve recommendation performance. We show these techniques to be particularly effective when dealing with sparsity and cold-start issues in several large, real-world datasets.


2021 ◽  
pp. 1-12
Author(s):  
Shangju Deng ◽  
Jiwei Qin

Tensors have been explored to share latent user-item relations and have been shown to be effective for recommendation. Tensors suffer from sparsity and cold start problems in real recommendation scenarios; therefore, researchers and engineers usually use matrix factorization to address these issues and improve the performance of recommender systems. In this paper, we propose matrix factorization completed multicontext data for tensor-enhanced algorithm a using matrix factorization combined with a multicontext data method for tensor-enhanced recommendation. To take advantage of existing user-item data, we add the context time and trust to enrich the interactive data via matrix factorization. In addition, Our approach is a high-dimensional tensor framework that further mines the latent relations from the user-item-trust-time tensor to improve recommendation performance. Through extensive experiments on real-world datasets, we demonstrated the superiority of our approach in predicting user preferences. This method is also shown to be able to maintain satisfactory performance even if user-item interactions are sparse.


2019 ◽  
Vol 2019 ◽  
pp. 1-10
Author(s):  
Feiqiong Chen ◽  
Guopeng Li ◽  
Shuaihui Wang ◽  
Zhisong Pan

Many real-world datasets are described by multiple views, which can provide complementary information to each other. Synthesizing multiview features for data representation can lead to more comprehensive data description for clustering task. However, it is often difficult to preserve the locally real structure in each view and reconcile the noises and outliers among views. In this paper, instead of seeking for the common representation among views, a novel robust neighboring constraint nonnegative matrix factorization (rNNMF) is proposed to learn the neighbor structure representation in each view, and L2,1-norm-based loss function is designed to improve its robustness against noises and outliers. Then, a final comprehensive representation of data was integrated with those representations of multiviews. Finally, a neighboring similarity graph was learned and the graph cut method was used to partition data into its underlying clusters. Experimental results on several real-world datasets have shown that our model achieves more accurate performance in multiview clustering compared to existing state-of-the-art methods.


2020 ◽  
Vol 13 (10) ◽  
pp. 1709-1722
Author(s):  
Stefan Neumann ◽  
Pauli Miettinen

We study clustering of bipartite graphs and Boolean matrix factorization in data streams. We consider a streaming setting in which the vertices from the left side of the graph arrive one by one together with all of their incident edges. We provide an algorithm which after one pass over the stream recovers the set of clusters on the right side of the graph using sublinear space; to the best of our knowledge this is the first algorithm with this property. We also show that after a second pass over the stream the left clusters of the bipartite graph can be recovered and we show how to extend our algorithm to solve the Boolean matrix factorization problem (by exploiting the correspondence of Boolean matrices and bipartite graphs). We evaluate an implementation of the algorithm on synthetic data and on real-world data. On real-world datasets the algorithm is orders of magnitudes faster than a static baseline algorithm while providing quality results within a factor 2 of the baseline algorithm. Our algorithm scales linearly in the number of edges in the graph. Finally, we analyze the algorithm theoretically and provide sufficient conditions under which the algorithm recovers a set of planted clusters under a standard random graph model.


2020 ◽  
Vol 34 (04) ◽  
pp. 5851-5858
Author(s):  
Jonathan Strahl ◽  
Jaakko Peltonen ◽  
Hirsohi Mamitsuka ◽  
Samuel Kaski

In matrix factorization, available graph side-information may not be well suited for the matrix completion problem, having edges that disagree with the latent-feature relations learnt from the incomplete data matrix. We show that removing these contested edges improves prediction accuracy and scalability. We identify the contested edges through a highly-efficient graphical lasso approximation. The identification and removal of contested edges adds no computational complexity to state-of-the-art graph-regularized matrix factorization, remaining linear with respect to the number of non-zeros. Computational load even decreases proportional to the number of edges removed. Formulating a probabilistic generative model and using expectation maximization to extend graph-regularised alternating least squares (GRALS) guarantees convergence. Rich simulated experiments illustrate the desired properties of the resulting algorithm. On real data experiments we demonstrate improved prediction accuracy with fewer graph edges (empirical evidence that graph side-information is often inaccurate). A 300 thousand dimensional graph with three million edges (Yahoo music side-information) can be analyzed in under ten minutes on a standard laptop computer demonstrating the efficiency of our graph update.


2019 ◽  
Vol 10 (1) ◽  
pp. 156
Author(s):  
Xiaolin Zheng ◽  
Disheng Dong

The standard matrix factorization methods for recommender systems suffer from data sparsity and cold-start problems. Thus, in real-world scenarios where items are commonly associated with textual data such as reviews, it becomes necessary to build a hybrid recommendation model that can fully utilize the text features. However, existing methods in this area either cannot extract good features from the texts due to their order–insensitive document modeling approaches or fail to learn the hybrid model in an effective way due to their complexity of inferring the latent vectors. To this end, we propose a deep hybrid recommendation model which seamlessly integrates matrix factorization with a Convolutional Neural Network (CNN), a powerful text feature extraction tool with the capability of detecting the information of word orders. Unlike previous works which use content features as prior knowledge to regularize the latent vectors, we combine CNN into MF in an additive manner to allow training CNN with direct learning signals. Furthermore, we propose an adversarial training framework to learn the hybrid recommendation model, where a generator model is built to learn the distribution over the pairwise ranking pairs while training a discriminator to distinguish generated (fake) and real item pairs. We conduct extensive experiments on three real-world datasets to demonstrate the effectiveness of our proposed model against state-of-the-art methods in various recommendation settings.


2021 ◽  
Vol 12 (2) ◽  
pp. 1-20
Author(s):  
Zeyu Cui ◽  
Feng Yu ◽  
Shu Wu ◽  
Qiang Liu ◽  
Liang Wang

Item representations in recommendation systems are expected to reveal the properties of items. Collaborative recommender methods usually represent an item as one single latent vector. Nowadays the e-commercial platforms provide various kinds of attribute information for items (e.g., category, price, and style of clothing). Utilizing this attribute information for better item representations is popular in recent years. Some studies use the given attribute information as side information, which is concatenated with the item latent vector to augment representations. However, the mixed item representations fail to fully exploit the rich attribute information or provide explanation in recommender systems. To this end, we propose a fine-grained Disentangled Item Representation (DIR) for recommender systems in this article, where the items are represented as several separated attribute vectors instead of a single latent vector. In this way, the items are represented at the attribute level, which can provide fine-grained information of items in recommendation. We introduce a learning strategy, LearnDIR, which can allocate the corresponding attribute vectors to items. We show how DIR can be applied to two typical models, Matrix Factorization (MF) and Recurrent Neural Network (RNN). Experimental results on two real-world datasets show that the models developed under the framework of DIR are effective and efficient. Even using fewer parameters, the proposed model can outperform the state-of-the-art methods, especially in the cold-start situation. In addition, we make visualizations to show that our proposition can provide explanation for users in real-world applications.


2021 ◽  
Vol 11 (6) ◽  
pp. 2817
Author(s):  
Tae-Gyu Hwang ◽  
Sung Kwon Kim

A recommender system (RS) refers to an agent that recommends items that are suitable for users, and it is implemented through collaborative filtering (CF). CF has a limitation in improving the accuracy of recommendations based on matrix factorization (MF). Therefore, a new method is required for analyzing preference patterns, which could not be derived by existing studies. This study aimed at solving the existing problems through bias analysis. By analyzing users’ and items’ biases of user preferences, the bias-based predictor (BBP) was developed and shown to outperform memory-based CF. In this paper, in order to enhance BBP, multiple bias analysis (MBA) was proposed to efficiently reflect the decision-making in real world. The experimental results using movie data revealed that MBA enhanced BBP accuracy, and that the hybrid models outperformed MF and SVD++. Based on this result, MBA is expected to improve performance when used as a system in related studies and provide useful knowledge in any areas that need features that can represent users.


Sign in / Sign up

Export Citation Format

Share Document