scholarly journals End-to-End Unpaired Image Denoising with Conditional Adversarial Networks

2020 ◽  
Vol 34 (04) ◽  
pp. 4140-4149
Author(s):  
Zhiwei Hong ◽  
Xiaocheng Fan ◽  
Tao Jiang ◽  
Jianxing Feng

Image denoising is a classic low level vision problem that attempts to recover a noise-free image from a noisy observation. Recent advances in deep neural networks have outperformed traditional prior based methods for image denoising. However, the existing methods either require paired noisy and clean images for training or impose certain assumptions on the noise distribution and data types. In this paper, we present an end-to-end unpaired image denoising framework (UIDNet) that denoises images with only unpaired clean and noisy training images. The critical component of our model is a noise learning module based on a conditional Generative Adversarial Network (cGAN). The model learns the noise distribution from the input noisy images and uses it to transform the input clean images to noisy ones without any assumption on the noise distribution and data types. This process results in pairs of clean and pseudo-noisy images. Such pairs are then used to train another denoising network similar to the existing denoising methods based on paired images. The noise learning and denoising components are integrated together so that they can be trained end-to-end. Extensive experimental evaluation has been performed on both synthetic and real data including real photographs and computer tomography (CT) images. The results demonstrate that our model outperforms the previous models trained on unpaired images as well as the state-of-the-art methods based on paired training data when proper training pairs are unavailable.

2021 ◽  
Vol 5 (45) ◽  
pp. 736-748
Author(s):  
A.S. Konushin ◽  
B.V. Faizov ◽  
V.I. Shakhuro

Traffic sign recognition is a well-researched problem in computer vision. However, the state of the art methods works only for frequent sign classes, which are well represented in training datasets. We consider the task of rare traffic sign detection and classification. We aim to solve that problem by using synthetic training data. Such training data is obtained by embedding synthetic images of signs in the real photos. We propose three methods for making synthetic signs consistent with a scene in appearance. These methods are based on modern generative adversarial network (GAN) architectures. Our proposed methods allow realistic embedding of rare traffic sign classes that are absent in the training set. We adapt a variational autoencoder for sampling plausible locations of new traffic signs in images. We demonstrate that using a mixture of our synthetic data with real data improves the accuracy of both classifier and detector.


Author(s):  
Jian Zhao ◽  
Lin Xiong ◽  
Yu Cheng ◽  
Yi Cheng ◽  
Jianshu Li ◽  
...  

Learning from synthetic faces, though perhaps appealing for high data efficiency, may not bring satisfactory performance due to the distribution discrepancy of the synthetic and real face images. To mitigate this gap, we propose a 3D-Aided Deep Pose-Invariant Face Recognition Model (3D-PIM), which automatically recovers realistic frontal faces from arbitrary poses through a 3D face model in a novel way. Specifically, 3D-PIM incorporates a simulator with the aid of a 3D Morphable Model (3D MM) to obtain shape and appearance prior for accelerating face normalization learning, requiring less training data. It further leverages a global-local Generative Adversarial Network (GAN) with multiple critical improvements as a refiner to enhance the realism of both global structures and local details of the face simulator’s output using unlabelled real data only, while preserving the identity information. Qualitative and quantitative experiments on both controlled and in-the-wild benchmarks clearly demonstrate superiority of the proposed model over state-of-the-arts.


2019 ◽  
Vol 11 (22) ◽  
pp. 2671
Author(s):  
Simon Leminen Madsen ◽  
Anders Krogh Mortensen ◽  
Rasmus Nyholm Jørgensen ◽  
Henrik Karstoft

Lack of annotated data for training of deep learning systems is a challenge for many visual recognition tasks. This is especially true for domain-specific applications, such as plant detection and recognition, where the annotation process can be both time-consuming and error-prone. Generative models can be used to alleviate this issue by producing artificial data that mimic properties of real data. This work presents a semi-supervised generative adversarial network (GAN) model to produce artificial samples of plant seedlings. By applying the semi-supervised approach, we are able to produce visually distinct samples for nine unique plant species using a single GAN model, while still maintaining a relatively high visual variance in the produced samples for each species. Additionally, we are able to control the appearance of the generated samples with respect to rotation and size through a set of latent variables, despite these not being annotated features in the training data. The generated samples resemble the intended species with an average recognition accuracy of ∼64.3%, evaluated using an external state-of-the-art plant seedling classification model. Additionally, we explore the potential of using the GAN model’s discriminator as a quality assessment tool to remove poor representations of plant seedlings from the artificial samples.


2018 ◽  
Author(s):  
Guohua Shen ◽  
Kshitij Dwivedi ◽  
Kei Majima ◽  
Tomoyasu Horikawa ◽  
Yukiyasu Kamitani

AbstractDeep neural networks (DNNs) have recently been applied successfully to brain decoding and image reconstruction from functional magnetic resonance imaging (fMRI) activity. However, direct training of a DNN with fMRI data is often avoided because the size of available data is thought to be insufficient to train a complex network with numerous parameters. Instead, a pre-trained DNN has served as a proxy for hierarchical visual representations, and fMRI data were used to decode individual DNN features of a stimulus image using a simple linear model, which were then passed to a reconstruction module. Here, we present our attempt to directly train a DNN model with fMRI data and the corresponding stimulus images to build an end-to-end reconstruction model. We trained a generative adversarial network with an additional loss term defined in a high-level feature space (feature loss) using up to 6,000 training data points (natural images and the fMRI responses). The trained deep generator network was tested on an independent dataset, directly producing a reconstructed image given an fMRI pattern as the input. The reconstructions obtained from the proposed method showed resemblance with both natural and artificial test stimuli. The accuracy increased as a function of the training data size, though not outperforming the decoded feature-based method with the available data size. Ablation analyses indicated that the feature loss played a critical role to achieve accurate reconstruction. Our results suggest a potential for the end-to-end framework to learn a direct mapping between brain activity and perception given even larger datasets.


Author(s):  
Annapoorani Gopal ◽  
Lathaselvi Gandhimaruthian ◽  
Javid Ali

The Deep Neural Networks have gained prominence in the biomedical domain, becoming the most commonly used networks after machine learning technology. Mammograms can be used to detect breast cancers with high precision with the help of Convolutional Neural Network (CNN) which is deep learning technology. An exhaustive labeled data is required to train the CNN from scratch. This can be overcome by deploying Generative Adversarial Network (GAN) which comparatively needs lesser training data during a mammogram screening. In the proposed study, the application of GANs in estimating breast density, high-resolution mammogram synthesis for clustered microcalcification analysis, effective segmentation of breast tumor, analysis of the shape of breast tumor, extraction of features and augmentation of the image during mammogram classification have been extensively reviewed.


Author(s):  
Xinyi Li ◽  
Liqiong Chang ◽  
Fangfang Song ◽  
Ju Wang ◽  
Xiaojiang Chen ◽  
...  

This paper focuses on a fundamental question in Wi-Fi-based gesture recognition: "Can we use the knowledge learned from some users to perform gesture recognition for others?". This problem is also known as cross-target recognition. It arises in many practical deployments of Wi-Fi-based gesture recognition where it is prohibitively expensive to collect training data from every single user. We present CrossGR, a low-cost cross-target gesture recognition system. As a departure from existing approaches, CrossGR does not require prior knowledge (such as who is currently performing a gesture) of the target user. Instead, CrossGR employs a deep neural network to extract user-agnostic but gesture-related Wi-Fi signal characteristics to perform gesture recognition. To provide sufficient training data to build an effective deep learning model, CrossGR employs a generative adversarial network to automatically generate many synthetic training data from a small set of real-world examples collected from a small number of users. Such a strategy allows CrossGR to minimize the user involvement and the associated cost in collecting training examples for building an accurate gesture recognition system. We evaluate CrossGR by applying it to perform gesture recognition across 10 users and 15 gestures. Experimental results show that CrossGR achieves an accuracy of over 82.6% (up to 99.75%). We demonstrate that CrossGR delivers comparable recognition accuracy, but uses an order of magnitude less training samples collected from the end-users when compared to state-of-the-art recognition systems.


Author(s):  
Huilin Zhou ◽  
Huimin Zheng ◽  
Qiegen Liu ◽  
Jian Liu ◽  
Yuhao Wang

Abstract Electromagnetic inverse-scattering problems (ISPs) are concerned with determining the properties of an unknown object using measured scattered fields. ISPs are often highly nonlinear, causing the problem to be very difficult to address. In addition, the reconstruction images of different optimization methods are distorted which leads to inaccurate reconstruction results. To alleviate these issues, we propose a new linear model solution of generative adversarial network-based (LM-GAN) inspired by generative adversarial networks (GAN). Two sub-networks are trained alternately in the adversarial framework. A linear deep iterative network as a generative network captures the spatial distribution of the data, and a discriminative network estimates the probability of a sample from the training data. Numerical results validate that LM-GAN has admirable fidelity and accuracy when reconstructing complex scatterers.


2021 ◽  
Vol 263 (2) ◽  
pp. 4558-4564
Author(s):  
Minghong Zhang ◽  
Xinwei Luo

Underwater acoustic target recognition is an important aspect of underwater acoustic research. In recent years, machine learning has been developed continuously, which is widely and effectively applied in underwater acoustic target recognition. In order to acquire good recognition results and reduce the problem of overfitting, Adequate data sets are essential. However, underwater acoustic samples are relatively rare, which has a certain impact on recognition accuracy. In this paper, in addition of the traditional audio data augmentation method, a new method of data augmentation using generative adversarial network is proposed, which uses generator and discriminator to learn the characteristics of underwater acoustic samples, so as to generate reliable underwater acoustic signals to expand the training data set. The expanded data set is input into the deep neural network, and the transfer learning method is applied to further reduce the impact caused by small samples by fixing part of the pre-trained parameters. The experimental results show that the recognition result of this method is better than the general underwater acoustic recognition method, and the effectiveness of this method is verified.


Sign in / Sign up

Export Citation Format

Share Document