scholarly journals Appearance and Motion Enhancement for Video-Based Person Re-Identification

2020 ◽  
Vol 34 (07) ◽  
pp. 11394-11401
Author(s):  
Shuzhao Li ◽  
Huimin Yu ◽  
Haoji Hu

In this paper, we propose an Appearance and Motion Enhancement Model (AMEM) for video-based person re-identification to enrich the two kinds of information contained in the backbone network in a more interpretable way. Concretely, human attribute recognition under the supervision of pseudo labels is exploited in an Appearance Enhancement Module (AEM) to help enrich the appearance and semantic information. A Motion Enhancement Module (MEM) is designed to capture the identity-discriminative walking patterns through predicting future frames. Despite a complex model with several auxiliary modules during training, only the backbone model plus two small branches are kept for similarity evaluation which constitute a simple but effective final model. Extensive experiments conducted on three popular video-based person ReID benchmarks demonstrate the effectiveness of our proposed model and the state-of-the-art performance compared with existing methods.

2020 ◽  
Author(s):  
Fei Qi ◽  
Zhaohui Xia ◽  
Gaoyang Tang ◽  
Hang Yang ◽  
Yu Song ◽  
...  

As an emerging field, Automated Machine Learning (AutoML) aims to reduce or eliminate manual operations that require expertise in machine learning. In this paper, a graph-based architecture is employed to represent flexible combinations of ML models, which provides a large searching space compared to tree-based and stacking-based architectures. Based on this, an evolutionary algorithm is proposed to search for the best architecture, where the mutation and heredity operators are the key for architecture evolution. With Bayesian hyper-parameter optimization, the proposed approach can automate the workflow of machine learning. On the PMLB dataset, the proposed approach shows the state-of-the-art performance compared with TPOT, Autostacker, and auto-sklearn. Some of the optimized models are with complex structures which are difficult to obtain in manual design.


Author(s):  
Xiang Lisa Li ◽  
Jason Eisner

Pre-trained word embeddings like ELMo and BERT contain rich syntactic and semantic information, resulting in state-of-the-art performance on various tasks. We propose a very fast variational information bottleneck (VIB) method to nonlinearly compress these embeddings, keeping only the information that helps a discriminative parser. We compress each word embedding to either a discrete tag or a continuous vector. In the discrete version, our automatically compressed tags form an alternative tag set: we show experimentally that our tags capture most of the information in traditional POS tag annotations, but our tag sequences can be parsed more accurately at the same level of tag granularity. In the continuous version, we show experimentally that moderately compressing the word embeddings by our method yields a more accurate parser in 8 of 9 languages, unlike simple dimensionality reduction.


2019 ◽  
Vol 4 (5) ◽  
pp. 1158-1163 ◽  
Author(s):  
Stepan A. Romanov ◽  
Ali E. Aliev ◽  
Boris V. Fine ◽  
Anton S. Anisimov ◽  
Albert G. Nasibulin

We present the state-of-the-art performance of air-coupled thermophones made of thin, freestanding films of randomly oriented single-walled carbon nanotubes (SWCNTs).


2020 ◽  
Vol 34 (07) ◽  
pp. 12637-12644 ◽  
Author(s):  
Yibo Yang ◽  
Hongyang Li ◽  
Xia Li ◽  
Qijie Zhao ◽  
Jianlong Wu ◽  
...  

The panoptic segmentation task requires a unified result from semantic and instance segmentation outputs that may contain overlaps. However, current studies widely ignore modeling overlaps. In this study, we aim to model overlap relations among instances and resolve them for panoptic segmentation. Inspired by scene graph representation, we formulate the overlapping problem as a simplified case, named scene overlap graph. We leverage each object's category, geometry and appearance features to perform relational embedding, and output a relation matrix that encodes overlap relations. In order to overcome the lack of supervision, we introduce a differentiable module to resolve the overlap between any pair of instances. The mask logits after removing overlaps are fed into per-pixel instance id classification, which leverages the panoptic supervision to assist in the modeling of overlap relations. Besides, we generate an approximate ground truth of overlap relations as the weak supervision, to quantify the accuracy of overlap relations predicted by our method. Experiments on COCO and Cityscapes demonstrate that our method is able to accurately predict overlap relations, and outperform the state-of-the-art performance for panoptic segmentation. Our method also won the Innovation Award in COCO 2019 challenge.


2021 ◽  
Vol 8 (2) ◽  
pp. 273-287
Author(s):  
Xuewei Bian ◽  
Chaoqun Wang ◽  
Weize Quan ◽  
Juntao Ye ◽  
Xiaopeng Zhang ◽  
...  

AbstractRecent learning-based approaches show promising performance improvement for the scene text removal task but usually leave several remnants of text and provide visually unpleasant results. In this work, a novel end-to-end framework is proposed based on accurate text stroke detection. Specifically, the text removal problem is decoupled into text stroke detection and stroke removal; we design separate networks to solve these two subproblems, the latter being a generative network. These two networks are combined as a processing unit, which is cascaded to obtain our final model for text removal. Experimental results demonstrate that the proposed method substantially outperforms the state-of-the-art for locating and erasing scene text. A new large-scale real-world dataset with 12,120 images has been constructed and is being made available to facilitate research, as current publicly available datasets are mainly synthetic so cannot properly measure the performance of different methods.


Author(s):  
Zhizheng Zhang ◽  
Cuiling Lan ◽  
Wenjun Zeng ◽  
Zhibo Chen ◽  
Shih-Fu Chang

Few-shot image classification learns to recognize new categories from limited labelled data. Metric learning based approaches have been widely investigated, where a query sample is classified by finding the nearest prototype from the support set based on their feature similarities. A neural network has different uncertainties on its calculated similarities of different pairs. Understanding and modeling the uncertainty on the similarity could promote the exploitation of limited samples in few-shot optimization. In this work, we propose Uncertainty-Aware Few-Shot framework for image classification by modeling uncertainty of the similarities of query-support pairs and performing uncertainty-aware optimization. Particularly, we exploit such uncertainty by converting observed similarities to probabilistic representations and incorporate them to the loss for more effective optimization. In order to jointly consider the similarities between a query and the prototypes in a support set, a graph-based model is utilized to estimate the uncertainty of the pairs. Extensive experiments show our proposed method brings significant improvements on top of a strong baseline and achieves the state-of-the-art performance.


2019 ◽  
Vol 9 (7) ◽  
pp. 1330 ◽  
Author(s):  
Yalong Jiang ◽  
Zheru Chi

Although a state-of-the-art performance has been achieved in pixel-specific tasks, such as saliency prediction and depth estimation, convolutional neural networks (CNNs) still perform unsatisfactorily in human parsing where semantic information of detailed regions needs to be perceived under the influences of variations in viewpoints, poses, and occlusions. In this paper, we propose to improve the robustness of human parsing modules by introducing a depth-estimation module. A novel scheme is proposed for the integration of a depth-estimation module and a human-parsing module. The robustness of the overall model is improved with the automatically obtained depth labels. As another major concern, the computational efficiency is also discussed. Our proposed human parsing module with 24 layers can achieve a similar performance as the baseline CNN model with over 100 layers. The number of parameters in the overall model is less than that in the baseline model. Furthermore, we propose to reduce the computational burden by replacing a conventional CNN layer with a stack of simplified sub-layers to further reduce the overall number of trainable parameters. Experimental results show that the integration of two modules contributes to the improvement of human parsing without additional human labeling. The proposed model outperforms the benchmark solutions and the capacity of our model is better matched to the complexity of the task.


Author(s):  
Yunhui Guo ◽  
Yandong Li ◽  
Liqiang Wang ◽  
Tajana Rosing

There is a growing interest in designing models that can deal with images from different visual domains. If there exists a universal structure in different visual domains that can be captured via a common parameterization, then we can use a single model for all domains rather than one model per domain. A model aware of the relationships between different domains can also be trained to work on new domains with less resources. However, to identify the reusable structure in a model is not easy. In this paper, we propose a multi-domain learning architecture based on depthwise separable convolution. The proposed approach is based on the assumption that images from different domains share cross-channel correlations but have domain-specific spatial correlations. The proposed model is compact and has minimal overhead when being applied to new domains. Additionally, we introduce a gating mechanism to promote soft sharing between different domains. We evaluate our approach on Visual Decathlon Challenge, a benchmark for testing the ability of multi-domain models. The experiments show that our approach can achieve the highest score while only requiring 50% of the parameters compared with the state-of-the-art approaches.


Cells ◽  
2019 ◽  
Vol 8 (12) ◽  
pp. 1635 ◽  
Author(s):  
Hilal Tayara ◽  
Kil To Chong

It is known that over 98% of the human genome is non-coding, and 93% of disease associated variants are located in these regions. Therefore, understanding the function of these regions is important. However, this task is challenging as most of these regions are not well understood in terms of their functions. In this paper, we introduce a novel computational model based on deep neural networks, called DQDNN, for quantifying the function of non-coding DNA regions. This model combines convolution layers for capturing regularity motifs at multiple scales and recurrent layers for capturing long term dependencies between the captured motifs. In addition, we show that integrating evolutionary information with raw genomic sequences improves the performance of the predictor significantly. The proposed model outperforms the state-of-the-art ones using raw genomics sequences only and also by integrating evolutionary information with raw genomics sequences. More specifically, the proposed model improves 96.9% and 98% of the targets in terms of area under the receiver operating characteristic curve and the precision-recall curve, respectively. In addition, the proposed model improved the prioritization of functional variants of expression quantitative trait loci (eQTLs) compared with the state-of-the-art models.


Author(s):  
Kaiqi Wang ◽  
Ke Chen ◽  
Kui Jia

This paper proposes a deep cascade network to generate 3D geometry of an object on a point cloud, consisting of a set of permutation-insensitive points. Such a surface representation is easy to learn from, but inhibits exploiting rich low-dimensional topological manifolds of the object shape due to lack of geometric connectivity. For benefiting from its simple structure yet utilizing rich neighborhood information across points, this paper proposes a two-stage cascade model on point sets. Specifically, our method adopts the state-of-the-art point set autoencoder to generate a sparsely coarse shape first, and then locally refines it by encoding neighborhood connectivity on a graph representation. An ensemble of sparse refined surface is designed to alleviate the suffering from local minima caused by modeling complex geometric manifolds. Moreover, our model develops a dynamically-weighted loss function for jointly penalizing the generation output of cascade levels at different training stages in a coarse-to-fine manner. Comparative evaluation on the publicly benchmarking ShapeNet dataset demonstrates superior performance of the proposed model to the state-of-the-art methods on both single-view shape reconstruction and shape autoencoding applications.


Sign in / Sign up

Export Citation Format

Share Document