scholarly journals Aggregation over Metric Spaces: Proposing and Voting in Elections, Budgeting, and Legislation

2021 ◽  
Vol 70 ◽  
pp. 1413-1439
Author(s):  
Laurent Bulteau ◽  
Gal Shahaf ◽  
Ehud Shapiro ◽  
Nimrod Talmon

We present a unifying framework encompassing a plethora of social choice settings. Viewing each social choice setting as voting in a suitable metric space, we offer a general model of social choice over metric spaces, in which—similarly to the spatial model of elections—each voter specifies an ideal element of the metric space. The ideal element acts as a vote, where each voter prefers elements that are closer to her ideal element. But it also acts as a proposal, thus making all participants equal not only as voters but also as proposers. We consider Condorcet aggregation and a continuum of solution concepts, ranging from minimizing the sum of distances to minimizing the maximum distance. We study applications of our abstract model to various social choice settings, including single-winner elections, committee elections, participatory budgeting, and participatory legislation. For each setting, we compare each solution concept to known voting rules and study various properties of the resulting voting rules. Our framework provides expressive aggregation for a broad range of social choice settings while remaining simple for voters; and may enable a unified and integrated implementation for all these settings, as well as unified extensions such as sybil-resiliency, proxy voting, and deliberative decision making. We study applications of our abstract model to various social choice settings, including single-winner elections, committee elections, participatory budgeting, and participatory legislation. For each setting, we compare each solution concept to known voting rules and study various properties of the resulting voting rules. Our framework provides expressive aggregation for a broad range of social choice settings while remaining simple for voters; and may enable a unified and integrated implementation for all these settings, as well as unified extensions such as sybil-resiliency, proxy voting, and deliberative decision making.

2020 ◽  
Vol 34 (02) ◽  
pp. 2087-2094
Author(s):  
David Kempe

In distortion-based analysis of social choice rules over metric spaces, voters and candidates are jointly embedded in a metric space. Voters rank candidates by non-decreasing distance. The mechanism, receiving only this ordinal (comparison) information, must select a candidate approximately minimizing the sum of distances from all voters to the chosen candidate. It is known that while the Copeland rule and related rules guarantee distortion at most 5, the distortion of many other standard voting rules, such as Plurality, Veto, or k-approval, grows unboundedly in the number n of candidates.An advantage of Plurality, Veto, or k-approval with small k is that they require less communication from the voters; all deterministic social choice rules known to achieve constant distortion require voters to transmit their complete rankings of all candidates. This motivates our study of the tradeoff between the distortion and the amount of communication in deterministic social choice rules.We show that any one-round deterministic voting mechanism in which each voter communicates only the candidates she ranks in a given set of k positions must have distortion at least 2n-k/k; we give a mechanism achieving an upper bound of O(n/k), which matches the lower bound up to a constant. For more general communication-bounded voting mechanisms, in which each voter communicates b bits of information about her ranking, we show a slightly weaker lower bound of Ω(n/b) on the distortion.For randomized mechanisms, Random Dictatorship achieves expected distortion strictly smaller than 3, almost matching a lower bound of 3 − 2/n for any randomized mechanism that only receives each voter's top choice. We close this gap, by giving a simple randomized social choice rule which only uses each voter's first choice, and achieves expected distortion 3 − 2/n.


2013 ◽  
Vol 1 ◽  
pp. 200-231 ◽  
Author(s):  
Andrea C.G. Mennucci

Abstract In this paper we discuss asymmetric length structures and asymmetric metric spaces. A length structure induces a (semi)distance function; by using the total variation formula, a (semi)distance function induces a length. In the first part we identify a topology in the set of paths that best describes when the above operations are idempotent. As a typical application, we consider the length of paths defined by a Finslerian functional in Calculus of Variations. In the second part we generalize the setting of General metric spaces of Busemann, and discuss the newly found aspects of the theory: we identify three interesting classes of paths, and compare them; we note that a geodesic segment (as defined by Busemann) is not necessarily continuous in our setting; hence we present three different notions of intrinsic metric space.


2019 ◽  
Vol 39 (2) ◽  
pp. 114-122
Author(s):  
N. A. Lysova

Experience of participatory budgeting in municipalities of Russian regions is reviewed in the paper. Forms of participation of the population in decision-making, as well as in the selection, realization and co-financing of public projects have been investigated. The analysis of the practices made it possible to identify the features and prospects of the Russian model of initiative budgeting.


Filomat ◽  
2017 ◽  
Vol 31 (11) ◽  
pp. 3157-3172
Author(s):  
Mujahid Abbas ◽  
Bahru Leyew ◽  
Safeer Khan

In this paper, the concept of a new ?-generalized quasi metric space is introduced. A number of well-known quasi metric spaces are retrieved from ?-generalized quasi metric space. Some general fixed point theorems in a ?-generalized quasi metric spaces are proved, which generalize, modify and unify some existing fixed point theorems in the literature. We also give applications of our results to obtain fixed points for contraction mappings in the domain of words and to prove the existence of periodic solutions of delay differential equations.


Mathematics ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 118
Author(s):  
Jelena Vujaković ◽  
Eugen Ljajko ◽  
Mirjana Pavlović ◽  
Stojan Radenović

One of the main goals of this paper is to obtain new contractive conditions using the method of a strictly increasing mapping F:(0,+∞)→(−∞,+∞). According to the recently obtained results, this was possible (Wardowski’s method) only if two more properties (F2) and (F3) were used instead of the aforementioned strictly increasing (F1). Using only the fact that the function F is strictly increasing, we came to new families of contractive conditions that have not been found in the existing literature so far. Assuming that α(u,v)=1 for every u and v from metric space Ξ, we obtain some contractive conditions that can be found in the research of Rhoades (Trans. Amer. Math. Soc. 1977, 222) and Collaco and Silva (Nonlinear Anal. TMA 1997). Results of the paper significantly improve, complement, unify, generalize and enrich several results known in the current literature. In addition, we give examples with results in line with the ones we obtained.


2020 ◽  
Vol 8 (1) ◽  
pp. 114-165
Author(s):  
Tetsu Toyoda

AbstractGromov (2001) and Sturm (2003) proved that any four points in a CAT(0) space satisfy a certain family of inequalities. We call those inequalities the ⊠-inequalities, following the notation used by Gromov. In this paper, we prove that a metric space X containing at most five points admits an isometric embedding into a CAT(0) space if and only if any four points in X satisfy the ⊠-inequalities. To prove this, we introduce a new family of necessary conditions for a metric space to admit an isometric embedding into a CAT(0) space by modifying and generalizing Gromov’s cycle conditions. Furthermore, we prove that if a metric space satisfies all those necessary conditions, then it admits an isometric embedding into a CAT(0) space. This work presents a new approach to characterizing those metric spaces that admit an isometric embedding into a CAT(0) space.


2021 ◽  
pp. 153568412199347
Author(s):  
José W. Meléndez ◽  
Maria Martinez-Cosio

Participatory planning has faced challenges engaging predominantly Spanish-speaking immigrants beyond the bottom rungs of Arnstein’s ladder of citizen participation. Participating at any level of the ladder requires individual civic skills, or capacities, that are integral to participatory processes. However, the specific skills necessary for collective action are less certain, due in part to a lack of clear definitions and a lack of clarity about how these capacities work in practice. Drawing on two years of data from a participatory budgeting process in an immigrant community in Chicago, Illinois, the authors identify key civic capacities that Spanish-speaking immigrants activated while engaging in civic discourse, and they explore the role these capacities played in moving ideas toward collective decision making. The authors present an organizational schema that aligns the study’s findings of 17 unique civic capacities with capacities identified in the literature as helping participants engage more meaningfully in decision-making processes.


2021 ◽  
Vol 40 (5) ◽  
pp. 9977-9985
Author(s):  
Naeem Saleem ◽  
Hüseyin Işık ◽  
Salman Furqan ◽  
Choonkil Park

In this paper, we introduce the concept of fuzzy double controlled metric space that can be regarded as the generalization of fuzzy b-metric space, extended fuzzy b-metric space and controlled fuzzy metric space. We use two non-comparable functions α and β in the triangular inequality as: M q ( x , z , t α ( x , y ) + s β ( y , z ) ) ≥ M q ( x , y , t ) ∗ M q ( y , z , s ) . We prove Banach contraction principle in fuzzy double controlled metric space and generalize the Banach contraction principle in aforementioned spaces. We give some examples to support our main results. An application to existence and uniqueness of solution for an integral equation is also presented in this work.


2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Ghorban Khalilzadeh Ranjbar ◽  
Mohammad Esmael Samei

Abstract The aim of this work is to usher in tripled b-metric spaces, triple weakly $\alpha _{s}$ α s -admissible, triangular partially triple weakly $\alpha _{s}$ α s -admissible and their properties for the first time. Also, we prove some theorems about coincidence and common fixed point for six self-mappings. On the other hand, we present a new model, talk over an application of our results to establish the existence of common solution of the system of Volterra-type integral equations in a triple b-metric space. Also, we give some example to illustrate our theorems in the section of main results. Finally, we show an application of primary results.


Sign in / Sign up

Export Citation Format

Share Document