scholarly journals Set-to-Sequence Methods in Machine Learning: A Review

2021 ◽  
Vol 71 ◽  
pp. 885-924
Author(s):  
Mateusz Jurewicz ◽  
Leon Derczynski

Machine learning on sets towards sequential output is an important and ubiquitous task, with applications ranging from language modelling and meta-learning to multi-agent strategy games and power grid optimization. Combining elements of representation learning and structured prediction, its two primary challenges include obtaining a meaningful, permutation invariant set representation and subsequently utilizing this representation to output a complex target permutation. This paper provides a comprehensive introduction to the _eld as well as an overview of important machine learning methods tackling both of these key challenges, with a detailed qualitative comparison of selected model architectures.

Author(s):  
Jarosław Koźlak ◽  
Bartlomiej Sniezynski ◽  
Dorota Wilk-Kołodziejczyk ◽  
Albert Leśniak ◽  
Krzysztof Jaśkowiec

2008 ◽  
Vol 17 (2) ◽  
pp. 121-142 ◽  
Author(s):  
Guido Heumer ◽  
Heni Ben Amor ◽  
Bernhard Jung

This paper presents a comparison of various machine learning methods applied to the problem of recognizing grasp types involved in object manipulations performed with a data glove. Conventional wisdom holds that data gloves need calibration in order to obtain accurate results. However, calibration is a time-consuming process, inherently user-specific, and its results are often not perfect. In contrast, the present study aims at evaluating recognition methods that do not require prior calibration of the data glove. Instead, raw sensor readings are used as input features that are directly mapped to different categories of hand shapes. An experiment was carried out in which test persons wearing a data glove had to grasp physical objects of different shapes corresponding to the various grasp types of the Schlesinger taxonomy. The collected data was comprehensively analyzed using numerous classification techniques provided in an open-source machine learning toolbox. Evaluated machine learning methods are composed of (a) 38 classifiers including different types of function learners, decision trees, rule-based learners, Bayes nets, and lazy learners; (b) data preprocessing using principal component analysis (PCA) with varying degrees of dimensionality reduction; and (c) five meta-learning algorithms under various configurations where selection of suitable base classifier combinations was informed by the results of the foregoing classifier evaluation. Classification performance was analyzed in six different settings, representing various application scenarios with differing generalization demands. The results of this work are twofold: (1) We show that a reasonably good to highly reliable recognition of grasp types can be achieved—depending on whether or not the glove user is among those training the classifier—even with uncalibrated data gloves. (2) We identify the best performing classification methods for the recognition of various grasp types. To conclude, cumbersome calibration processes before productive usage of data gloves can be spared in many situations.


2020 ◽  
Author(s):  
Shreya Reddy ◽  
Lisa Ewen ◽  
Pankti Patel ◽  
Prerak Patel ◽  
Ankit Kundal ◽  
...  

<p>As bots become more prevalent and smarter in the modern age of the internet, it becomes ever more important that they be identified and removed. Recent research has dictated that machine learning methods are accurate and the gold standard of bot identification on social media. Unfortunately, machine learning models do not come without their negative aspects such as lengthy training times, difficult feature selection, and overwhelming pre-processing tasks. To overcome these difficulties, we are proposing a blockchain framework for bot identification. At the current time, it is unknown how this method will perform, but it serves to prove the existence of an overwhelming gap of research under this area.<i></i></p>


Sign in / Sign up

Export Citation Format

Share Document