Cool-Season Turfgrass Reseeding Intervals for Bispyribac-Sodium

10.1614/183.1 ◽  
2006 ◽  
Vol 20 (2) ◽  
pp. 526-529 ◽  
Author(s):  
Darren W. Lycan ◽  
Stephen E. Hart

Field studies were conducted in 2002 and 2003 in New Jersey to determine the length of time after a bispyribac-sodium application at which creeping bentgrass, Kentucky bluegrass, and perennial ryegrass can be safely reseeded. Bispyribac at 148 or 296 g ai/ha was applied 6, 4, 2, or 1 week before seeding (WBS). Bispyribac at 148 g/ha applied 1 WBS reduced ground cover of creeping bentgrass and Kentucky bluegrass at 3 weeks after seeding (WAS) by 30 and 42% as compared to the nontreated check, respectively. Reductions in Kentucky bluegrass and creeping bentgrass ground cover from bispyribac at 296 g/ha applied 1 WBS were evident at 28 WAS, whereas perennial ryegrass recovered from initial reductions in ground cover by this time. Applications made 6 to 2 weeks before seeding did not adversely affect ground cover of any species at any evaluation date as compared to the nontreated check. These studies suggest creeping bentgrass, Kentucky bluegrass, and perennial ryegrass can be safely reseeded 2 weeks after a bispyribac application. However, ground cover may be reduced by bispyribac applied 1 WBS.

2010 ◽  
Vol 24 (4) ◽  
pp. 461-470 ◽  
Author(s):  
Patrick E. McCullough ◽  
Stephen E. Hart ◽  
Dan Weisenberger ◽  
Zachary J. Reicher

Amicarbazone has potential for selective annual bluegrass control in cool-season turfgrasses, but seasonal application timings may influence efficacy. To test this hypothesis, field experiments in New Jersey and Indiana investigated amicarbazone efficacy from fall or spring applications and growth chamber experiments investigated the influence of temperature on efficacy. Fall treatments were more injurious to creeping bentgrass and Kentucky bluegrass than spring applications, but fall applications were also more efficacious for annual bluegrass control. In growth chamber experiments, injury and clipping weight reductions were exacerbated by increased temperatures from 10 to 30 C on annual bluegrass, creeping bentgrass, Kentucky bluegrass, and perennial ryegrass. Results suggest that amicarbazone use for annual bluegrass control in cool-season turf may be limited to spring applications, but increased temperature enhances activity on all grasses.


HortScience ◽  
2005 ◽  
Vol 40 (5) ◽  
pp. 1552-1555 ◽  
Author(s):  
Darren W. Lycan ◽  
Stephen E. Hart

Previous research has demonstrated that bispyribac-sodium can selectively control established annual bluegrass (Poa annua L.) in creeping bentgrass (Agrostis stolonifera L.). Annual bluegrass is also a problematic weed in other cool-season turfgrass species. However, the relative tolerance of other cool-season turfgrass species to bispyribac is not known. Field experiments were conducted at Adelphia, N.J., in 2002 and 2003 to gain understanding of the phytotoxic effects that bispyribac may have on kentucky bluegrass (Poa pratensis L.), perennial ryegrass (Lolium perenne L.), tall fescue (Festuca arundinacea (L.) Schreb.), and chewings fine fescue (Festuca rubra L. subsp. commutata Gaud.). Single applications of bispyribac at 37 to 296 g·ha–1 were applied to mature stands of each species on 11 June, 2002 and 10 June, 2003. Visual injury was evaluated and clippings were collected 35 and 70 days after treatment (DAT). Visual injury at 35 DAT increased as bispyribac rate increased. Kentucky bluegrass was least tolerant to bispyribac with up to 28% injury when applied at 296 g·ha–1. Injury on other species did not exceed 20%. Initial injury on perennial ryegrass, tall fescue, and chewings fine fescue was primarily in the form of chlorosis, while kentucky bluegrass exhibited more severe stunting and thinning symptoms. Bispyribac at rates from 74 to 296 g·ha–1 reduced kentucky bluegrass clipping weights by 19% to 35%, respectively, as compared to the untreated control at 35 DAT in 2002. Initial visual injury on perennial ryegrass, tall fescue, and chewings fine fescue dissipated to ≤5% by 70 DAT. However, recovery of kentucky bluegrass was less complete. These studies suggest that bispyribac-sodium has potential to severely injure kentucky bluegrass. Injury on perennial ryegrass, tall fescue, and chewings fine fescue appears to be less severe and persistent; therefore, bispyribac can be used for weed control in these species. Chemical names used: 2,6-bis[(4,6-dimethoxy-2-pyrimidinyl)oxy]benzoic acid (bispyribac-sodium).


2006 ◽  
Vol 20 (2) ◽  
pp. 340-344 ◽  
Author(s):  
Josh B. Beam ◽  
Whitnee L. Barker ◽  
Shawn D. Askew

Creeping bentgrass infestations in cool-season turfgrass are unsightly and difficult to control. Field tests were conducted at Stoney Creek Golf Course in Wintergreen, VA, in 2002 and 2003 on a Kentucky bluegrass rough and at the Turfgrass Research Center in Blacksburg, VA, in 2003 on a perennial ryegrass lawn to determine the efficacy of imazaquin, isoxaflutole, and mesotrione for creeping bentgrass control and turfgrass tolerance. Isoxaflutole and mesotrione each applied in two sequential applications at 280 g ai/ha or three sequential applications at 170 or 60 g/ha and imazaquin in two sequential applications at 390 g/ha controlled bentgrass at least 92% 14 wk after initial treatment (WAIT) at all locations. Sequential applications were applied at 2-wk intervals. Isoxaflutole and mesotrione, regardless of rate or sequential treatment, injured turfgrass less than 20% at all rating dates and locations. Imazaquin in two sequential applications at 390 g/ha injured Kentucky bluegrass and perennial ryegrass greater than 50% at all locations 14 WAIT. Results indicate isoxaflutole or mesotrione could be used for selective bentgrass control in Kentucky bluegrass or perennial ryegrass.


2016 ◽  
Vol 30 (1) ◽  
pp. 36-44 ◽  
Author(s):  
Christopher R. Johnston ◽  
Jialin Yu ◽  
Patrick E. McCullough

Topramezone controls weeds in tolerant, cool-season turfgrasses, but injury potential during establishment has received limited investigation. The objectives of this research were to evaluate the tolerance of ‘Penn A-4’ creeping bentgrass, ‘Manhattan V' perennial ryegrass, and ‘Titan' tall fescue to topramezone at 18.5, 37, or 74 g ae ha−1during establishment. Grasses were seeded in strips in October, and treatments were applied at 0, 2, 4, or 6 wk after seeding (WAS). Perennial ryegrass and tall fescue had minimal (≤ 8%) injury from all treatments, and ground cover was greater or equal to the nontreated at all application timings. Topramezone applied 4 WAS at 37 and 74 g ha−1injured creeping bentgrass 16 and 23% at 2 wk after treatment, respectively. However, all other topramezone rates and timings caused < 10% injury. Mesotrione at 175 g ai ha−1injured creeping bentgrass 14 to 43% at all timings and was more injurious than topramezone. Mesotrione applied at 2, 4, or 6 WAS controlled lesser swinecress ≥ 99% at 20 WAS, whereas applications on the day of seeding provided 71% control. All topramezone treatments provided poor control (< 70%) of lesser swinecress at 20 WAS. Overall, perennial ryegrass and tall fescue are tolerant to topramezone during establishment at the rates tested. Seedling creeping bentgrass has better tolerance to topramezone from 18.5 to 74 g ha−1, than to mesotrione at 175 g ha−1and may provide end-users an HPPD inhibitor for use during establishment.


HortScience ◽  
1995 ◽  
Vol 30 (2) ◽  
pp. 285-288 ◽  
Author(s):  
J.D. Fry ◽  
P.H. Dernoeden ◽  
W.S. Upham ◽  
Y.L. Qian

Field studies were conducted in Kansas and Maryland to compare the safety and efficacy of halosulfuron-methyl (HM) and bentazon for topkill of yellow nutsedge (Cyperus esculentus L.). Kentucky bluegrass (Poa pratensis L.) and creeping bentgrass (Agrostis palustris Huds.) treated with single (in Kansas) or sequential (in Maryland) HM (35 to 140 g·ha–1) or bentazon (1120 or 1680 g·ha–1) applications exhibited little injury, and treated turf had acceptable quality in all studies. Bentazon caused an unacceptable reduction in perennial ryegrass (Lolium perenne L.) quality at ≥5 weeks after treatment in four of five tests. Perennial ryegrass quality declined linearly with increasing HM rates (between 35 and 140 g·ha–1). In Maryland, HM (≥70 g·ha–1) elicited unacceptable perennial ryegrass quality for 2 or 3 weeks; however, in Kansas, quality was unacceptable for ≈1 week. In Kansas, yellow nutsedge topkill by HM (70 kg·ha–1) ranged from 52% to 97%. A single HM application (35, 70, or 140 kg·ha–1) provided > 97% topkill in Maryland. Yellow nutsedge topkill by bentazon (1680 g·ha–1) generally was inferior to that by HM (70 g·ha–1). Chemical names used: 3-(1-methylethyl)-1H-2,1,3-benzothiadiazin-4 (3H)-one 2,2-dioxide (bentazon), methyl 3-chloro-5-(4,6-dimethoxypyrimidin-2-ylcarbamoylsulfamoyl)-1-methylpyrazole-4-carboxylate (halosulfuron-methyl).


2011 ◽  
Vol 29 (2) ◽  
pp. 75-80
Author(s):  
Thomas Serensits ◽  
Matthew Cutulle ◽  
Jeffrey F. Derr

Abstract Cool-season grass species are often overseeded into bermudagrass turf for both aesthetics and functionality during the winter months. When the overseeded grass persists beyond the spring, however, it becomes a weed. Experiments were conducted to evaluate overseeded grass species and seeding rate on turf cover during the fall, spring, and summer. The ability of perennial ryegrass, Italian ryegrass, and hybrid bluegrass to then persist in bermudagrass one year after seeding was determined. Both perennial ryegrass and Italian ryegrass produced acceptable ground cover in the spring after fall seeding. Hybrid bluegrass did not establish well, resulting in unacceptable cover. Perennial ryegrass generally had the most persistence one year after seeding, either because of the survival of plants through the summer or because of new germination the following fall. The highest cover seen one year after seeding was 24% with perennial ryegrass in the 2005 trial. Maximum cover seen with Italian ryegrass and hybrid bluegrass 12 months after seeding was 19 and 8%, respectively. Seeding perennial or Italian ryegrass in February achieved acceptable cover in spring in the first trial but not the second. Persistence the following fall, however, was greater in the second trial, suggesting new germination. Percent cover 12 months after seeding tended to increase as the seeding rate increased, also suggesting new germination the following fall. Although quality is lower with Italian ryegrass compared to perennial ryegrass, it transitions out easier than perennial ryegrass, resulting in fewer surviving plants one year after fall seeding.


1990 ◽  
Vol 115 (4) ◽  
pp. 608-611 ◽  
Author(s):  
Jennifer M. Johnson-Cicalese ◽  
C.R. Funk

Studies were conducted on the host plants of four billbug species (Coleoptera:Curculionidae: Sphenophorus parvulus Gyllenhal, S. venatus Chitt., S. inaequalis Say, and S. minimus Hart) found on New Jersey turfgrasses. A collection of 4803 adults from pure stands of various turfgrasses revealed all four billbugs on Kentucky bluegrass (Poa pratensis L.), tall fescue (Festuca arundinacea Schreb.), and perennial ryegrass (Lolium perenne L.), and S. parvulus, S. venatus, and S. minimus on Chewings fescue (F. rubra L. ssp. commutata Gaud.). Since the presence of larvae, pupae, or teneral adults more accurately indicates the host status of a grass species, immature billbugs were collected from plugs of the various grass species and reared to adults for identification. All four species were reared from immature billbugs found in Kentucky bluegrass turf; immatures of S. venatus, S. inaequalis, and S. minimus were found in tall fescue; S. venatus and S. minimus in perennial ryegrass; and S. inaequalis in strong creeping red fescue (F. rubra L. ssp. rubra). A laboratory experiment was also conducted in which billbug adults were confined in petri dishes with either Kentucky bluegrass, perennial ryegrass, tall fescue, or bermudagrass (Cynodon dactylon Pers.). Only minor differences were found between the four grasses in billbug survival, number of eggs laid, and amount of feeding. In general, bermudagrass was the least favored host and the other grasses were equally adequate hosts. The results of this study indicate a need for updating host-plant lists of these four billbug species.


1999 ◽  
Vol 13 (2) ◽  
pp. 253-256 ◽  
Author(s):  
Zachary J. Reicher ◽  
Daniel V. Weisenberger ◽  
Clark S. Throssell

There are limited options for controlling large crabgrass in spring-seeded cool-season turf. The objective of this experiment was to evaluate the safety and effectiveness of dithiopyr and quinclorac to control large crabgrass in spring-seeded Kentucky bluegrass and perennial ryegrass stands. Quinclorac at 0.84 kg/ha and dithiopyr at 0.56 kg/ha were applied separately at various times prior to seeding and after emergence of Kentucky bluegrass and perennial ryegrass. Quinclorac applied once at 2, 4, 8, or 12 weeks after emergence (WAE) or split-applied preplant incorporated (PPI) + 12 WAE will give season-long control of large crabgrass with no injury to spring-seeded Kentucky bluegrass or perennial ryegrass. Quinclorac applied PPI or 0 WAE is safe to use in spring seedings, but it will not provide season-long control of large crabgrass. Dithiopyr applied 2 or 4 WAE will control large crabgrass season-long while not injuring spring-seeded Kentucky bluegrass or perennial ryegrass. However, dithiopyr applied PPI or 0 WAE will severely limit germination of desirable turf, and dithiopyr applied 8 or 12 WAE will not control mature crabgrass.


Weed Science ◽  
2016 ◽  
Vol 64 (1) ◽  
pp. 12-24 ◽  
Author(s):  
Patrick E. McCullough ◽  
Jialin Yu ◽  
Mark A. Czarnota ◽  
Paul L. Raymer

Bermudagrass and goosegrass are problematic weeds with limited herbicides available for POST control in creeping bentgrass. Metamifop effectively controls these weeds with greater selectivity in cool-season grasses than other ACCase inhibitors. The objectives of this research were to determine the physiological basis for metamifop selectivity in turfgrasses. In greenhouse experiments, metamifop rate required to reduce shoot biomass 50% from the nontreated (GR50) at 4 wk after treatment was > 6,400, 2,166, and 53 g ai ha−1for creeping bentgrass, Kentucky bluegrass, and goosegrass, respectively. The GR50for bermudagrass treated with diclofop-methyl or metamifop was 2,850 and 60 g ha−1, respectively. In laboratory experiments, peak absorption of14C-metamifop was reached at 48, 72, and 96 h after treatment (HAT) for goosegrass, creeping bentgrass and Kentucky bluegrass, respectively. Grasses translocated < 10% of the absorbed radioactivity out of the treated leaf at 96 HAT, but creeping bentgrass translocated three times more radioactivity than goosegrass and Kentucky bluegrass. Creeping bentgrass, Kentucky bluegrass, and goosegrass metabolized 16, 14, and 25% of14C-metamifop after 96 h, respectively. Goosegrass had around two times greater levels of a metabolite at retention factor 0.45 than creeping bentgrass and Kentucky bluegrass. The concentration of metamifop required to inhibit isolated ACCase enzymes 50% from the nontreated (I50) measured > 100, > 100, and 38 μM for creeping bentgrass, Kentucky bluegrass, and goosegrass, respectively. In other experiments, foliar absorption of14C-metamifop in bermudagrass was similar to14C-diclofop-methyl. Bermudagrass metabolized 23 and 60% of the absorbed14C-diclofop-methyl to diclofop acid and a polar conjugate after 96 h, respectively, but only 14% of14C-metamifop was metabolized. Isolated ACCase was equally susceptible to inhibition by diclofop acid and metamifop (I50= 0.7 μM), suggesting degradation rate is associated with bermudagrass tolerance levels to these herbicides. Overall, the physiological basis for metamifop selectivity in turfgrass is differential levels of target site inhibition.


2012 ◽  
Vol 26 (3) ◽  
pp. 582-586 ◽  
Author(s):  
Jeffrey F. Derr

Broadleaf weeds are common and troublesome pests in cool-season turfgrass species such as tall fescue, Kentucky bluegrass, perennial ryegrass, and creeping bentgrass. Broadleaf weeds are primarily managed in these grasses through POST applications of growth regulator herbicides in the phenoxy, benzoic acid, and pyridine chemical classes. There are disadvantages to use of these chemicals, including nontarget plant damage and limited residual control. Certain annual broadleaf weeds can be controlled through application of isoxaben or a PRE crabgrass herbicide, but these herbicides do not control emerged broadleaf weeds. There are advantages to use of sulfonylurea herbicides, including PRE and POST control of annual and perennial weeds, a different mode of action, and these herbicides have low vapor pressure, reducing the potential for offsite movement. There are disadvantages to the use of sulfonylurea herbicides, including limited spectrum of broadleaf weed species controlled and limited tolerance in cool-season turfgrass species. The primary sulfonylurea herbicides used in cool-season turfgrass are chlorsulfuron, halosulfuron, metsulfuron, and sulfosulfuron. There have been specialized uses for primisulfuron and tribenuron-methyl.


Sign in / Sign up

Export Citation Format

Share Document