Multispecies resistance and integrated management: a bioeconomic model for integrated management of rigid ryegrass (Lolium rigidum) and wild radish (Raphanus raphanistrum)

Weed Science ◽  
2003 ◽  
Vol 51 (5) ◽  
pp. 798-809 ◽  
Author(s):  
Marta Monjardino ◽  
David J. Pannell ◽  
Stephen B. Powles
2004 ◽  
Vol 44 (12) ◽  
pp. 1195 ◽  
Author(s):  
M. Monjardino ◽  
D. J. Pannell ◽  
S. B. Powles

Most cropping farms in Western Australia must deal with the management of herbicide-resistant populations of weeds such as annual ryegrass (Lolium rigidum) and wild radish (Raphanus raphanistrum). Farmers are approaching the problem of herbicide resistance by adopting integrated weed management systems, which allow weed control with a range of different techniques. These systems include non-herbicide methods ranging from delayed seeding and high crop seeding rates to the use of non-cropping phases in the rotation. In this paper, the Multi-species RIM (resistance and integrated management) model was used to investigate the value of including non-cropping phases in the crop rotation. Non-crop options investigated here were haying and green manuring. Despite them providing excellent weed control, it was found that inclusion of these non-cropping phases did not increase returns, except in cases of extreme weed numbers and high levels of herbicide resistance.


2004 ◽  
Vol 44 (3) ◽  
pp. 265 ◽  
Author(s):  
M. Monjardino ◽  
D. J. Pannell ◽  
S. B. Powles

Most cropping farms in Western Australia must deal with the management of herbicide-resistant populations of weeds such as annual ryegrass (Lolium rigidum Gaudin) and wild radish (Raphanus raphanistrum�L.). Farmers are approaching the problem of herbicide resistance by adopting integrated weed management systems, which allow weed control with a range of different techniques. One important question in the design of such systems is whether and when the benefits of including pasture in rotation with crops exceed the costs. In this paper, the multi-species resistance and integrated management model was used to investigate the value of including pasture phases in the crop rotation. The most promising of the systems examined appears to be so-called 'phase farming', involving occasional 3-year phases of pasture rather than shorter, more frequent and regular pasture phases. This approach was competitive with the best continuous cropping rotation in a number of scenarios, particularly where herbicide resistance was at high levels.


Weed Science ◽  
2021 ◽  
pp. 1-19
Author(s):  
David J. Brunton ◽  
Peter Boutsalis ◽  
Gurjeet Gill ◽  
Christopher Preston

Abstract Populations of rigid ryegrass (Lolium rigidum Gaudin) from southern Australia have evolved resistance to the thiocarbamate herbicide prosulfocarb. The inheritance of prosulfocarb resistance was explored by crossing R and S individuals. In all families within each cross, except 16.2, the response of the F1 were intermediate between the parents, suggesting that resistance is inherited as a single, partially dominant trait. For 16.2, the response of the F1 was more similar to the susceptible parent, suggesting resistance may be a recessive trait in this population. Segregation at the discriminating dose of 1200 g a.i. ha−1 prosulfocarb in populations 375-14 fitted the ratio (15:1) consistent with two independent dominant alleles; 198-15 fitted a ratio (13:3) for two independent alleles, one dominant and one recessive; and EP162 fitted a ratio (9:7) for two additive dominant alleles. In contrast segregation of population 16.2 fitted a (7:9) ratio consistent with two independent recessive alleles contributing to prosulfocarb resistance. Four different patterns of resistance to prosulfocarb were identified in different resistant populations, with inheritance as a dominant allele, dominant and recessive, additive dominant and as an independent recessive allele. This suggests there are several different mechanisms of prosulfocarb resistance present in L. rigidum.


2018 ◽  
Vol 66 (51) ◽  
pp. 13378-13385 ◽  
Author(s):  
Danica E. Goggin ◽  
Gareth L. Nealon ◽  
Gregory R. Cawthray ◽  
Adrian Scaffidi ◽  
Mark J. Howard ◽  
...  

Weed Science ◽  
2005 ◽  
Vol 53 (5) ◽  
pp. 615-619 ◽  
Author(s):  
Marulak Simarmata ◽  
Suleiman Bughrara ◽  
Donald Penner

Glyphosate resistance was found in a rigid ryegrass population in northern California. A sample of the resistant plants were collected and grown under greenhouse conditions. The objective of this study was to evaluate glyphosate resistance in the progeny of the collected plants by recurrent selection, obtain the homozygous resistant and sensitive lines to establish dose-response curves, and to determine the inheritance of glyphosate resistance in rigid ryegrass. Diverse levels of resistance were observed in the first generation with survival of 89, 59, 45, and 9% from glyphosate at 1x, 2x, 4x, and 8x respectively, where x = 1.12 kg ha−1isopropylamine salt of glyphosate. Clones of plants that died from 1x were allowed to produce seed and were further subjected to recurrent selection to generate the most sensitive plants (S lines), which died from 0.125x glyphosate. The most resistant plants (R lines) were generated from the survivors receiving 8x glyphosate. The ratio between I50rates for the glyphosate resistant and the glyphosate sensitive plants was > 100-fold. The R and S lines were crossed reciprocally and F1progeny of both (R × S) and (S × R) showed intermediate resistance. These survived up to 2x glyphosate. The F2progeny were generated by intercrossing of F1plants. The ratio of sensitive, intermediate, and resistant plants in the F2population before the treatment of glyphosate at 0.125x followed by 8x was 1 : 16, 14 : 16, and 1 : 16 respectively, which corresponded to the Mendelian segregation ratio of two genes. The results indicated that the inheritance of glyphosate resistance in rigid ryegrass from California appeared to be nuclear, incompletely dominant, multigenic, and pollen-transmitted with no indication of maternal inheritance.


Weed Science ◽  
2016 ◽  
Vol 64 (2) ◽  
pp. 207-215 ◽  
Author(s):  
Rupinder Kaur Saini ◽  
Jenna Malone ◽  
Christopher Preston ◽  
Gurjeet S. Gill

Rigid ryegrass, an important annual weed species in cropping regions of southern Australia, has evolved resistance to 11 major groups of herbicides. Dose–response studies were conducted to determine response of three clethodim-resistant populations and one clethodim-susceptible population of rigid ryegrass to three different frost treatments (−2 C). Clethodim-resistant and -susceptible plants were exposed to frost in a frost chamber from 4:00 P.M. to 8:00 A.M. for three nights before or after clethodim application and were compared with plants not exposed to frost. A reduction in the level of clethodim efficacy was observed in resistant populations when plants were exposed to frost for three nights before or after clethodim application. In the highly resistant populations, the survival percentage and LD50were higher when plants were exposed to frost before clethodim application compared with frost after clethodim application. However, frost treatment did not influence clethodim efficacy of the susceptible population. Sequencing of the acetyl coenzyme A carboxylase (ACCase) gene of the three resistant populations identified three known mutations at positions 1781, 2041, and 2078. However, most individuals in the highly resistant populations did not contain any known mutation in ACCase, suggesting the resistance mechanism was a nontarget site. The effect of frost on clethodim efficacy in resistant plants may be an outcome of the interaction between frost and the clethodim resistance mechanism(s) present.


Sign in / Sign up

Export Citation Format

Share Document