ACCase-Inhibitor Herbicide Resistance in Downy Brome (Bromus tectorum) in Oregon

Weed Science ◽  
2007 ◽  
Vol 55 (2) ◽  
pp. 91-94 ◽  
Author(s):  
Daniel A. Ball ◽  
Sandra M. Frost ◽  
Larry H. Bennett

In spring 2005, a downy brome population with possible resistance to fluazifop-P, an acetyl-CoA carboxylase (ACCase) inhibitor (group 1) herbicide was found in a commercial creeping red fescue seed production field, near La Grande, OR, where fluazifop-P had been used to control downy brome repeatedly over 7 yr. Greenhouse experiments were conducted to confirm resistance to a number of group 1 herbicides. The suspected resistant downy brome accession was tested for resistance to fluazifop-P and tested for cross-resistance to other aryloxyphenoxy propionate (APP) and cyclohexanedione (CHD) herbicides, including quizalofop-P, sethoxydim, and clethodim. Data recorded included plant-mortality counts and biomass. Tests revealed that the La Grande downy brome accession was highly resistant to fluazifop-P and sethoxydim at all tested rates. The La Grande accession suffered no mortality from fluazifop-P or sethoxydim treatments up to the maximum tested rate of eight times (8×) the labeled recommendation. The La Grande accession was resistant to quizalofop-P and clethodim at the labeled rate or less but was susceptible to application rates higher than the labeled rate. The control downy brome accession was completely susceptible to fluazifop-P, quizalofop-P, and clethodim at all rates and exhibited increasing susceptibility with increasing sethoxydim rate. This pattern of cross-resistance differs from that of a previously reported case of ACCase resistance in downy brome.

Weed Science ◽  
1987 ◽  
Vol 35 (2) ◽  
pp. 277-281 ◽  
Author(s):  
Jesse M. Richardson ◽  
David R. Gealy ◽  
Larry A. Morrow

Ethyl ester of DPX-Y6202 {2-[4-[(6-chloro-2-quinoxalinyl)oxy] phenoxy] propanoic acid} and butyl ester of fluazifop {(±)-2-[4-[[5-(trifluoromethyl)-2-pyridinyl] oxy] phenoxy] propanoic acid} applied during the reproductive phase of development at 0.07 and 0.28 kg ai/ha prevented seed formation in downy brome (Bromus tectorumL. # BROTE). Fluazifop prevented seed formation over a wider range of application rates and growth stages than did DPX-Y6202. Seed production was prevented most readily by herbicide applications made early in the reproductive phase. Environmental factors during reproduction affected herbicide performance. Foliar absorption and translocation of14C-fluazifop into the developing spikelets was greater than that of14C-DPX-Y6202 in downy brome.


Weed Science ◽  
1999 ◽  
Vol 47 (3) ◽  
pp. 256-257 ◽  
Author(s):  
Carol Mallory-Smith ◽  
Paul Hendrickson ◽  
George Mueller-Warrant

A Bromus tectorum L. (downy brome) biotype with cross-resistance to sulfosulfuron has been identified. The resistant biotype was selected with primisulfuron in Poa pratensis L. (Kentucky bluegrass) plots near Madras, OR. The plots received two treatments of 20 g ai ha−1 primisulfuron in the fall of 1993, 1994, and 1995. In 1995, control of B. tectorum decreased and greenhouse studies confirmed that the biotype was resistant to primisulfuron. Cross-resistance to sulfosulfuron also was confirmed in greenhouse studies. Metabolism of sulfosulfuron rather than an insensitive site of action is the likely cause of the cross-resistance.


Weed Science ◽  
2020 ◽  
Vol 68 (2) ◽  
pp. 116-124 ◽  
Author(s):  
Marcos Yanniccari ◽  
Ramón Gigón

AbstractIn Argentina, Lolium spp. occur in 40% of winter cereal crops from the Pampas. Several years ago, cases of glyphosate-resistant perennial ryegrass (Lolium perenne L.) were detected, and the use of acetyl-CoA carboxylase (ACCase)-inhibiting herbicides to eradicate these plants has been considered. The aim of this study was to evaluate the sensitivity of a putative pinoxaden-resistant L. perenne population to ACCase-inhibiting herbicides. Around 80% of plants from the putative resistant population survived at a recommended dose of pinoxaden, and they produced viable seeds. The resistance indices (RIs) to pinoxaden were 5.1 and 2.8 for plant survival and seed production, respectively. A single point mutation that conferred a Asp-2078-Gly substitution in ACCase was the source of the resistance. To match the plant control achieved in the susceptible population, the resistant population required 5.4- and 10.4-fold greater doses of clethodim and quizalofop, respectively. RIs for viable seed production when treated with clethodim and quizalofop were 3.3 and 6.6, respectively. The Asp-2078-Gly mutation endowed significant levels of resistance to pinoxaden, clethodim, and quizalofop. For three herbicides, the level of resistance of a pinoxaden-resistant L. perenne population to ACCase inhibitors was evaluated, based on an evaluation of dose response for plant survival and seed production. The RIs were higher for plant survival than for seed production. In Argentina, the selection pressure associated with clethodim and haloxifop preplant application and pinoxaden use on wheat (Triticum aestivum L.) and barley (Hordeum vulgare L.) crops, would have favored the propagation of the Asp-2078-Gly mutation with its associated resistance.


2013 ◽  
Vol 6 (1) ◽  
pp. 60-64 ◽  
Author(s):  
Matthew J. Rinella ◽  
Robert A. Masters ◽  
Susan E. Bellows

AbstractPrevious research showed growth regulator herbicides, such as picloram and aminopyralid, have a sterilizing effect on Japanese brome (Bromus japonicus Thunb.) that can reduce this invasive annual grass's seed production nearly 100%. This suggests growth regulators might be used to control invasive annual grasses by depleting their short-lived seed banks. The goal of this study was to extend the previous Japanese brome research to downy brome (Bromus tectorum L.), the most damaging invasive annual grass of U.S. grasslands. In a greenhouse, we found picloram did not greatly influence downy brome seed production, while point estimates suggest aminopyralid reduced seed production 55 to 80%. If not for a highly abnormal retillering response that we somewhat doubt would occur in the field, point estimates suggest aminopyralid would have reduced downy brome seed production approximately 90% when applied at the heading stage and approximately 98% when applied at three earlier growth stages. Our greenhouse study should encourage field studies designed to further explore the potential for using growth regulators to control downy brome and other invasive annual grasses.


2005 ◽  
Vol 75 (4) ◽  
pp. 5-16 ◽  
Author(s):  
I.N. Morrisson ◽  
M.D. Devine

Herbicide resistance was first recognized as a problem on the Canadian Prairies in 1988 when trifluralin-resistant green foxtail (Setaria viridis) was reported in Manitoba, and chlorsulfuron-resistant chickweed (Stellaria media) and koehia (Kochia scoparia) in Alberta and Saskatchewan, respectively. Since then, the number of resistant weeds has increased to include wild oats (Avena fatua) resistant to triallate and to aryloxyphenoxypropionate and cyclohexanedione (group 1) herbicides, green foxtail to group 1 herbicides, Russian thistle (Salsola pestifer) and wild mustard (Sinapis arvensis) to sulfonylurea and imidazolinone (group 2) herbicides, and wild mustard to growth regulator (group 4) herbicides. The levels and patterns of cross-resistance to chemicals in groups 1 and 2 vary widely among different populations, with resistance factors [resistant to susceptible (R:S) ratios] derived from dose response curves typically ranging from < 2 to > 150. Group 1 resistance in green foxtail and group 2 resistance in chickweed and kochia populations are due to reduced sensitivities of the target enzymes, acetyl coenzyme-A carboxylase (ACCase) and acetolactate synthase (ALS), respectively. The mechanisms of resistance in the other species including wild oats resistant to ACCase inhibitors (group 1 ) and to triallate/difenzoquat (group 8) are unclear. At present, the only instance of multiple resistance in western Canada is green foxtail resistant to chemicals in both groups 1 and 3 (ACCase inhibitors and dinitroanilines). Future concerns focus mainly on the increasing seriousness of group 1 and 8 resistance across the Prairies, and on the possibility of selecting for multiple resistance in weeds such as green foxtail for which there are few remaining effective control options.


2019 ◽  
Vol 37 ◽  
Author(s):  
A. FRANCISCHINI ◽  
J. CONSTANTIN ◽  
R.S. OLIVEIRA JR ◽  
H.K. TAKANO ◽  
R.R. MENDES

ABSTRACT: Herbicide resistance in Amaranthus genus occurs frequently around the word and has become a big problem in cotton producing areas. The objective of this work was to evaluate cross-and multiple-resistance of redroot pigweed (A. retroflexus) to herbicides used in preemergence in cotton fields in Brazil. Seven dose-response experiments were conducted with herbicides atrazine, prometryn, diuron, S-metolachlor, trifluralin, trifloxysulfuron-sodium and pyrithiobac-sodium, and the treatments consisted of application rates of 0, ¼, ½, 1, 2 and 4 times the recommended label rate. Eight A. retroflexus byotipes with suspect of resistance were sampled for experiments in three brazilian states of cotton producing. Resistance to prometryn was confirmed for one biotype in Goiás (GO), and one biotype from Mato Grosso (MT) showed cross-resistance to atrazine and prometryn. One byotipe from GO was identified with cross-resistance to trifloxysulfuron-sodium and pyrithiobac-sodium. One of the GO samples was identified with multiple resistance to prometryn and ALS inhibitors, another one to atrazine and ALS inhibitors, while MT byotipe was confirmed with multiple resistance to triazines and pyrithiobac. The herbicides S-metolachlor, diuron, and trifluralin were efficient for control of this species, therefore, they can be used as managment alternative in those regions.


Weed Science ◽  
1984 ◽  
Vol 32 (2) ◽  
pp. 180-184 ◽  
Author(s):  
Thomas D. Whitson ◽  
Harold P. Alley

Tebuthiuron {N-[5-(1,1-dimethylethyl)-1,3,4-thiadiazol-2-yl]-N,N′-dimethylurea} was evaluated on three Wyoming soil types for control of big sagebrush (Artemisia tridentata Nutt.), silver sagebrush (Artemisia cana Pursh.), and phytotoxic effects on associated vegetation. Big sagebrush was controlled with tebuthiuron at application rates of 0.6 to 1.1 kg ai/ha, whereas silver sagebrush was not completely controlled. Prairie junegrass [Koeleria pyramidata (Cam.) Beauv.], western wheatgrass (Agropyron smithii Rydb. ♯3 AGRSM), needleandthread (Stipa comata Trin. ♯ STDCO), and green needlegrass (Stipa viritdula Trin. ♯ STOVI) were not significantly reduced with tebuthiuron up to 1.1 kg ai/ha. Blue grama (Bouteloua gracilis H.B.K. ♯ BOBGR), downy brome (Bromus tectorum L. ♯ BROTE), plains pricklypear (Opuntia polyacantha Haw. ♯ OPUPO), and broom snakeweed [Gutierrezia sarothrae (Pursh.) Britt. and Rugsby, ♯ GUESA] were tolerant to tebuthiuron at rates up to 1.1 kg ai/ha.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Corine Ngufor ◽  
Renaud Govoetchan ◽  
Augustin Fongnikin ◽  
Estelle Vigninou ◽  
Thomas Syme ◽  
...  

AbstractThe rotational use of insecticides with different modes of action for indoor residual spraying (IRS) is recommended for improving malaria vector control and managing insecticide resistance. Insecticides with new chemistries are urgently needed. Broflanilide is a newly discovered insecticide under consideration. We investigated the efficacy of a wettable powder (WP) formulation of broflanilide (VECTRON T500) for IRS on mud and cement wall substrates in laboratory and experimental hut studies against pyrethroid-resistant malaria vectors in Benin, in comparison with pirimiphos-methyl CS (Actellic 300CS). There was no evidence of cross-resistance to pyrethroids and broflanilide in CDC bottle bioassays. In laboratory cone bioassays, broflanilide WP-treated substrates killed > 80% of susceptible and pyrethroid-resistant An. gambiae sl for 6–14 months. At application rates of 100 mg/m2 and 150 mg/m2, mortality of wild pyrethroid-resistant An. gambiae sl entering experimental huts in Covè, Benin treated with VECTRON T500 was similar to pirimiphos-methyl CS (57–66% vs. 56%, P > 0.05). Throughout the 6-month hut trial, monthly wall cone bioassay mortality on VECTRON T500 treated hut walls remained > 80%. IRS with broflanilide shows potential to significantly improve the control of malaria transmitted by pyrethroid-resistant mosquito vectors and could thus be a crucial addition to the current portfolio of IRS insecticides.


2011 ◽  
Vol 150 (6) ◽  
pp. 717-724 ◽  
Author(s):  
M. V. BAGAVATHIANNAN ◽  
J. K. NORSWORTHY ◽  
K. L. SMITH ◽  
P. NEVE

SUMMARYThe spread of herbicide resistance in barnyardgrass (Echinochloa crus-galli(L.) Beauv.) poses a serious threat to crop production in the southern United States. A thorough knowledge of the biology of barnyardgrass is fundamental for designing effective resistance-management programmes. In the present study, seed production of barnyardgrass in response to time of emergence was investigated in cotton and rice, respectively, in Fayetteville and Rohwer, Arkansas, over a 2-year period (2008–09). Barnyardgrass seed production was greater when seedlings emerged with the crop, but some seed production was observed even if seedlings emerged several weeks after crop emergence. Moreover, barnyardgrass seed production was highly variable across environments. When emerging with the crop (0 weeks after crop emergence (WAE)), barnyardgrass producedc. 35 500 and 16 500 seeds/plant in cotton, andc. 39 000 and 2900 seeds/plant in rice, in 2008 and 2009, respectively. Seed production was observed when seedlings emerged up to 5 WAE (2008) or 7 WAE (2009) in cotton and up to 5 WAE (2008, 2009) in rice; corresponding seed production wasc. 2500 and 1500 seeds/plant in cotton, andc. 14 700 and 110 seeds/plant in rice, in 2008 and 2009, respectively. The results suggest that cultural approaches that delay the emergence of barnyardgrass or approaches that make the associated crop more competitive will be useful in integrated management programmes. In the context of herbicide resistance management, it may be valuable to prevent seed return to the seedbank, irrespective of cohorts. The findings are vital for parameterizing herbicide resistance simulation models for barnyardgrass.


Sign in / Sign up

Export Citation Format

Share Document