Impact of Nitrogen and Weeds on Glyphosate-Resistant Sugarbeet Yield and Quality

2014 ◽  
Vol 28 (1) ◽  
pp. 189-199 ◽  
Author(s):  
Alicia J. Spangler ◽  
Christy L. Sprague ◽  
Kurt Steinke

Field experiments were conducted in 2010 and 2011 at two locations in Michigan to determine the effects of nitrogen and weed removal on glyphosate-resistant sugarbeet yield and quality. Nitrogen rates were 0, 67, 100, 134, and 67 : 67 kg N ha−1, and weeds were removed when they were < 2, 8, 15, and 30 cm tall. At the beginning of the growing season, weeds responded to N sooner than sugarbeet. Nitrogen assimilation by weeds was three times greater than sugarbeet at 0, 67, 100, and 134 kg N ha−1 and four times greater than sugarbeet with the split application of N (67 : 67 kg N ha−1) averaged over the weed removal timings. Higher N rates increased N sufficiency index values and sugarbeet canopy closure; weeds 30 cm tall had lower N sufficiency index values and a smaller sugarbeet canopy. The effect of N on root yields varied, but the highest N rates (134 kg N ha−1 or 67 : 67 kg N ha−1) were among the highest sugarbeet yields at all locations. Highest yields were achieved when weeds were controlled before reaching 2 cm tall at three of the four site-years. Delaying weed control until weeds were 8 or 15 cm tall reduced yield by 15%, whereas 30-cm-tall weeds reduced yield up to 21%. Recoverable white sucrose ha−1 (RWSH) also was reduced by 8 to 16% if weeds were 8 cm tall. These results indicate that weeds are highly competitive with sugarbeet and can assimilate large quantities of N early in the growing season, especially at larger growth stages. However, it appears that sugarbeets were able to scavenge sufficient N at the N rates used in this study to overcome N removal effects from larger weeds, resulting in no interaction between N rate and weed removal timing for sugarbeet root yield, quality, or RWSH.

2021 ◽  
Vol 45 (1) ◽  
Author(s):  
E. M. Abd El Lateef ◽  
B. B. Mekki ◽  
M. S. Abd El-Salam ◽  
I. M. El-Metwally

Abstract Background The objective of this work is to identify the most proper herbicidal treatment on sugar beet to compare different single weed control herbicide doses on sugar beet traits and associated weeds as well as yield and quality under sandy soil conditions. Therefore, two field experiments were conducted during the winter seasons of 2017/2018 and 2018/2019 at the Experimental Farm of the National Research Centre, El-Beheira Governorate. Tigro at 1.0 and 0.750 l fed−1, Betasana-Trio at 0.675 and at 0.9 l fed−1, Select Super at 0.5 and 0.375 l fed−1 and Betanal MaxxPro at 0.5 l fed−1 besides the unweeded and hand weeded twice were used. Results The results showed that the herbicides Betasana-Trio at 0.9 l fed−1, Tigro at 1.0 l fed−1 and Betasana-Trio at 0.675 l fed−1 when sprayed twice could effectively and/or completely eliminate the broadleaved weeds associated with sugar beet plants. Moreover, the results indicated and confirmed that Tigro and Betasana-Trio herbicides are effective in controlling broadleaved weeds. Similar tendency was recorded for the narrow-leaved weeds, where Select Super or Betanal MaxxPro at 0.5 l fed−1 as well as Select Super at 0.375 l fed−1 could completely eliminate or minimize the narrow-leaved weeds associated with sugar beet plants. The greatest significant root length, root diameters and root yield plant−1 were recorded when hand weeding twice followed by Betanal MaxxPro at 0.5 l fed−1 without significant differences. Gross sugar % ranged between 12.08 and 15 .7% and extractable sugar % ranged between 8.97 and 13.8% for Betasana-Trio at 0.09 l fed−1 and Betanal MaxxPro at 0.5 l fed−1. Conclusion Betanal MaxxPro gave the highest values of root and biological yield ton fed−1. Betanal MaxxPro followed by hand weeding treatment twice resulted in the greatest sugar yield fed−1. The highest sugar yield resulted from the herbicidal treatment with Betanal MaxxPro or Tigro at 1.0 l fed−1, which gave the greatest gross and extractable sugar yield fed−1 and exceeded the hand weeding treatment by 10.4 and 7.8%.


1982 ◽  
Vol 9 (2) ◽  
pp. 53-57 ◽  
Author(s):  
M. E. Walker ◽  
T. P. Gaines ◽  
R. J. Henning

Abstract This study was conducted to determine the effects of foliar-applied fertilizer on yield, quality, chemical composition, and vegetative characteristics of Florunner peanuts. Field experiments wre conducted over a four year period, 1976–1979, on two Coastal Plain soils. Foliar fertilizer containing, N, P, K, and S was applied at varying rates and intervals during the growing season. Plants were sampled at three stages of growth to study vegetative characteristics and chemical composition. Yield and quality factors were taken at harvest. Foliar fertilizer applied at various rates at different time intervals did not increase yields at either location during the four year study. A slight increase in %SMK was noted in 1976 at one site for the highest rate applied late in the growing season. The two highest rates (168 and 224 kg/ha) caused severe burn damage to the foliage in 1977 and 1978, and consequently only the low rate (112 kg/ha) was used in 1979. In 1978, pod number was reduced with the highest rate at one location for one of three sampling dates, while at the other there was some increase in number of pegs and pods for one sampling date with increased foliar fertilization. Peanut tops were analyzed for N, P, K, Ca, and Mg. Phosphorus and K increased for the highest rate for one sampling date in 1978 at one site. Results of these studies indicate that foliar N, P, K, and S fertilization does not increase yield, grade, pegs, pods, or nutrient uptake of peanuts.


2019 ◽  
Vol 33 (03) ◽  
pp. 393-399 ◽  
Author(s):  
Stevan Z. Knezevic ◽  
Pavle Pavlovic ◽  
O. Adewale Osipitan ◽  
Ethann R. Barnes ◽  
Clint Beiermann ◽  
...  

AbstractWidespread and repeated use of glyphosate resulted in an increase in glyphosate-resistant (GR) weeds. This led to an urgent need for diversification of weed control programs and use of PRE herbicides with alternative sites of action. Field experiments were conducted over a 4-yr period (2015 to 2018) across three locations in Nebraska to evaluate the effects of PRE-applied herbicides on critical time for weed removal (CTWR) in GR soybean. The studies were laid out in a split-plot arrangement with herbicide regime as the main plot and weed removal timing as the subplot. The herbicide regimes used were either no PRE or premix of either sulfentrazone plus imazethapyr (350 + 70 g ai ha−1) or saflufenacil plus imazethapyr plus pyroxasulfone (26 + 70 + 120 g ai ha−1). The weed removal timings were at V1, V3, V6, R2, and R5 soybean stages, with weed-free and weedy season-long checks. Weeds were removed by application of glyphosate (1,400 g ae ha−1) or by hoeing. The results across all years and locations suggested that the use of PRE herbicides delayed CTWR in soybean. In particular, the CTWR without PRE herbicides was determined to be around the V1 to V2 (14 to 21 d after emergence [DAE]) growth stage, depending on the location and weed pressure. The use of PRE-applied herbicides delayed CTWR from about the V4 (28 DAE) stage up to the R5 (66 DAE) stage. These results suggest that the use of PRE herbicides in GR soybean could delay the need for POST application of glyphosate by 2 to 5 wk, thereby reducing the need for multiple applications of glyphosate during the growing season. Additionally, the use of PRE herbicides could provide additional modes of action needed to manage GR weeds in GR soybean.


1997 ◽  
Vol 87 (12) ◽  
pp. 1226-1232 ◽  
Author(s):  
D. Shtienberg

The effects of Rhizopus head rot, caused by Rhizopus oryzae, on the yield of confectionery sunflower and its quality were studied in field experiments conducted from 1994 to 1996. The extent of yield loss was related to the crop growth stage at inoculation. When heads were inoculated at the budding stage, loss was not apparent, because inoculated heads were not infected. When inoculated at the anthesis stage, loss was relatively high (42.5 to 99.1%), and both the number of achenes per head and the individual achene weight were reduced. When heads were inoculated at the seed development stage, yield was not reduced significantly (although the entire receptacle was rotted). Effects of Rhizopus head rot on measures of yield quality were examined as well. Inoculation with R. oryzae did not affect the size of the achenes at any crop growth stage. In contrast, the incidence of discolored achenes (an external sign of nutmeats with a bitter off-flavor) was affected by the disease at all crop growth stages. A survey in eight commercial fields from 1992 to 1996 found that, by the end of the season, incidence of disease ranged from 2.3 to 17.4%. However, since disease intensified late, resultant yield losses were minor and did not exceed 3.1%. Loss figures were estimated by means of a model that was developed and validated in the field experiments. The disease did affect the incidence of discolored achenes. Thus, the conclusion drawn is that the effects of Rhizopus head rot in confectionery sunflower on crop yield is of minimal concern, at least when disease intensifies late, as was the case in the studied fields, but management of the disease should be considered in some situations. The objectives would be to prevent a reduction in yield quality, not yield quantity.


1990 ◽  
Vol 30 (6) ◽  
pp. 845 ◽  
Author(s):  
NA Maier ◽  
AP Dahlenburg ◽  
TK Twigden

The effect of nitrogen (N), at rates up to 590 kg N/ha, on the yield and quality of Cream Gold onions grown on siliceous sands was investigated in field experiments conducted during 1987-88 (1 site) and 1988-89 (2 sites). As the rate of applied N increased there was a significant (P<0.001) increase in the fresh weight of tops harvested when the largest bulbs were 25-30 mm in diameter. Fresh weight of tops was significantly (P<0.001) correlated with final marketable yield of bulbs. Nitrogen application accelerated top senescence. Nitrogen-deficient plants had erect green tops at harvest. Marketable yield was significantly (P<0.01) increased and the yield of culls (unmarketable bulbs) was significantly (P<0.01) decreased as the rate of N increased at all sites. Nitrogen rates in the range 299-358 kg N/ha were required for 95% of maximum yield. Scale thickness increased significantly (P<0.05) and glucose and fructose concentrations decreased significantly (P<0.05) at 2 sites as the rate of applied N increased. Soluble solids and dry matter of bulbs were not affected by N. Bulb size increased as the rate of applied N increased, however, the magnitude of the effect varied between sites. Number of days to 10% sprouting during storage at 15 � 0.5�C was significantly increased as the rate of applied N increased up to 40 kg N/ha at 2 sites. We have concluded that for the cv. Cream Gold grown on siliceous sands, the high rates of fertiliser N required to maximise marketable yield and bulb size were not detrimental to quality.


2006 ◽  
Vol 86 (3) ◽  
pp. 605-619 ◽  
Author(s):  
S. S. Malhi ◽  
R. E. Karamanos

Deficiency of copper (Cu) in Canadian prairie soils is not widespread, but whenever it occurs it can cause a drastic reduction in seed yield and quality of most cereals, especially wheat. Field experiments conducted in western Canada indicated that broadcast-incorporation of granular Cu fertilizers prior to seeding at 3-5.6 kg Cu ha-1 was usually sufficient to prevent Cu deficiency in wheat, and improve seed yield and quality. At lower rates (< 2.0 kg Cu ha-1), broadcast-incorporation of granular Cu fertilizers was not effective, while surface spray-broadcast followed by incorporation of liquid Cu fertilizers was much more effective in increasing seed yield of wheat in the first year of application. Surface broadcast without incorporation and seedrow-placed granular Cu fertilizers were much less effective in improving seed yield of wheat than their foliar or soil-incorporated applications. In the growing season, foliar applications of Cu at 0.20 to 0.28 kg Cu ha-1 to wheat at the Feekes 6 (first node of stem visible at base of shoot or stem elongation), Feekes 10 (sheath of last leaf completely grown or flag-leaf) and early boot growth stages were very effective in restoring seed yield, while Cu applications at the Feekes 2 (four-leaf) or Feekes 10.5 (complete heading) growth stage did not have a consistent effect to correct damage caused by Cu deficiency. Some Cu fertilizers (e.g., Cu oxide) were less effective than others in preventing/correcting Cu deficiency. Soil application at relatively high rates produced residual benefits in increasing seed yield for a number of years. The sensitivity of crops to Cu deficiency is usually in the order (wheat, flax, canary seed) > (barley, alfalfa) > (timothy seed, oats, corn) > (peas, clovers) > (canola, rye, forage grasses). Stem melanosis in wheat was associated with deficiency of Cu in soil, and the disease was reduced substantially with Cu application. A high level of available P in soil was observed to induce/increase severity of Cu deficiency in wheat. Soil analysis for diethylene triamine pentacetic acid- (DTPA) extractable Cu in soil can be used as a good diagnostic tool to predict Cu deficiency, but there was a poor relationship between total Cu concentration in shoots and the degree of Cu deficiency in crops. Application of Cu fertilizers to wheat on Cu-deficient soils also generally improved seed quality. Key words: Application time, Cu source, foliar application, granular Cu, growth stage, placement method, rate of Cu, seedrow-placed Cu, soil incorporation, wheat


2018 ◽  
Vol 2018 ◽  
pp. 1-8 ◽  
Author(s):  
Olga S. Walsh ◽  
Sanaz Shafian ◽  
Robin J. Christiaens

Nitrogen (N) is one of the most essential nutrients needed to reach maximum grain yield in all environments. Nitrogen fertilizers represent an important production cost, in both monetary and environmental terms. The aim of this study was to assess the effect of preplant nitrogen (N) rate and topdress N source on spring wheat (Triticum aestivum L.) grain yield and quality. Study was conducted in North-Central and Western Montana from 2011 to 2013 (total of 6 site-years). Six different preplant nitrogen (N) rates (0, 220, 22, 44, 67, and 90 N rate, kg ha−1) followed by two topdress N sources (urea, 46-0-0, and urea ammonium nitrate (UAN), 32-0-0) were applied to spring wheat (Triticum aestivum L.). The results showed that there were no significant differences in grain yield, protein content, or protein yield, associated with topdress N source.


2017 ◽  
Vol 32 (2) ◽  
pp. 205-210 ◽  
Author(s):  
Katherine A. Stanley ◽  
Steven J. Shirtliffe ◽  
Dilshan Benaragama ◽  
Lena D. Syrovy ◽  
Hema S. N. Duddu

AbstractInterrow cultivation is a selective, in-crop mechanical weed control tool that has the potential to control weeds later in the growing season with less crop damage compared with other in-crop mechanical weed control tools. To our knowledge, no previous research has been conducted on the tolerance of narrow-row crops to interrow cultivation. The objective of this experiment was to determine the tolerance of field pea and lentil to interrow cultivation. Replicated field experiments were conducted in Saskatchewan, Canada, in 2014 and 2015. Weekly cultivation treatments began at the 4-node stage of each crop, continuing for 6 wk. Field pea and lentil yield linearly declined with later crop stages of cultivation. Cultivating multiple times throughout the growing season reduced yield by 15% to 30% in both crops. Minimal yield loss occurred when interrow cultivation was conducted once at early growth stages of field pea and lentil; however, yield loss increased with delayed and more frequent cultivation events.


HortScience ◽  
1994 ◽  
Vol 29 (5) ◽  
pp. 575g-576
Author(s):  
Carl J. Rosen ◽  
Mohamed Errebhi

Applying appropriate rates of nitrogen fertilizer during the growing season for potatoes on irrigated sandy soils is an important concern from both a production and environmental standpoint. Although potatoes on sandy soils are responsive to nitrogen fertilizer, high rates of nitrogen applied early in the growing season have been associated with nitrate leaching due to unpredictable rainfall. Use of lower nitrogen rates applied more frequently through the season is one strategy to minimize nitrate losses and improve nitrogen use efficiency. Portable nitrate electrodes were used to measure nitrate concentrations in petiole sap. Diagnostic criteria based on final yield and nitrate sap concentrations at various growth stages were developed over a three year period. This rapid test can now be used to make an immediate assessment of nitrogen status of the plant and a prediction for whether supplemental nitrogen will be needed. On-farm trials are currently being carried out to demonstrate the use of the saptest as a best management practice.


Sign in / Sign up

Export Citation Format

Share Document