scholarly journals Analysis of a Low-Angle Annular Expander Nozzle

2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Kyll Schomberg ◽  
John Olsen ◽  
Graham Doig

An experimental and numerical analysis of a low-angle annular expander nozzle is presented to observe the variance in shock structure within the flow field. A RANS-based axisymmetric numerical model was used to evaluate flow characteristics and the model validated using experimental pressure readings and schlieren images. Results were compared with an equivalent converging-diverging nozzle to determine the capability of the wake region in varying the effective area of a low-angle design. Comparison of schlieren images confirmed that shock closure occurred in the expander nozzle, prohibiting the wake region from affecting the area ratio. The findings show that a low angle of deflection is inherently unable to influence the effective area of an annular supersonic nozzle design.

2013 ◽  
Vol 23 (2) ◽  
pp. 97-118 ◽  
Author(s):  
Joaquin De la Morena ◽  
Kshitij Neroorkar ◽  
Alejandro H. Plazas ◽  
Richard C. Peterson ◽  
David P. Schmidt

2016 ◽  
Vol 11 (2) ◽  
pp. 150-155
Author(s):  
R. Troian ◽  
D. Dragna ◽  
C. Bailly ◽  
M.-A. Galland

Modeling of acoustic propagation in a duct with absorbing treatment is considered. The surface impedance of the treatment is sought in the form of a rational fraction. The numerical model is based on a resolution of the linearized Euler equations by finite difference time domain for the calculation of the acoustic propagation under a grazing flow. Sensitivity analysis of the considered numerical model is performed. The uncertainty of the physical parameters is taken into account to determine the most influential input parameters. The robustness of the solution vis-a-vis changes of the flow characteristics and the propagation medium is studied.


Materials ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 607
Author(s):  
Yuxi Zhao ◽  
Rongcheng Liu ◽  
Fan Yan ◽  
Dawei Zhang ◽  
Junjin Liu

The windblown sand-induced degradation of glass panels influences the serviceability and safety of these panels. In this study, the degradation of glass panels subject to windblown sand with different impact velocities and impact angles was studied based on a sandblasting test simulating a sandstorm. After the glass panels were degraded by windblown sand, the surface morphology of the damaged glass panels was observed using scanning electron microscopy, and three damage modes were found: a cutting mode, smash mode, and plastic deformation mode. The mass loss, visible light transmittance, and effective area ratio values of the glass samples were then measured to evaluate the effects of the windblown sand on the panels. The results indicate that, at high abrasive feed rates, the relative mass loss of the glass samples decreases initially and then remains steady with increases in impact time, whereas it increases first and then decreases with an increase in impact angle such as that for ductile materials. Both visible light transmittance and effective area ratio decrease with increases in the impact time and velocities. There exists a positive linear relationship between the visible light transmittance and effective area ratio.


2014 ◽  
Vol 590 ◽  
pp. 546-550
Author(s):  
Zhi Qiang Fan ◽  
Hai Bo Yang ◽  
Fei Zhao ◽  
Rong Zhu ◽  
Dong Bai Sun

The practical requirements of the project the nozzle entrance temperature is high, the gas specific heat ratio varies greatly, so it must consider the specific heat ratio change impact on two-dimensional nozzle contour design. Divided into consideration specific heat ratio change and not consider two kinds of scheme design of 1.4Ma nozzle profile and build the model using the arc line method, numerical simulation is carried out through the CFD software Fluent, analysis of two kinds of design scheme comparison. The results show that, in the supersonic nozzle at low Maher numbers, two schemes of nozzle design profile similarity, parameters change little flow tube, export the Maher number and the flow quality can meet the design requirements, proof of specific heat ratio has little effect on the design results in the design of the nozzle under the condition of low Maher number.


2014 ◽  
Vol 578-579 ◽  
pp. 936-939 ◽  
Author(s):  
Qian Qian Sun ◽  
Yun Zou ◽  
Qiang Wang

Nonlinear numerical analysis of the stress performance of SRC-RC transfer columns was carried out in this paper with the finite element software of ABAQUS. Compered with the experimental result , numerical analysis result are found to be reasonable.Then the influence of factors such as extension length of shape steel , area ratio of shape steel and axial-load ratio were contrastively analyzed . The results show that extension length of shape steel and the area ratio of shape steel have a greater influence on the bearing capacity and the hysteretic performance of transfer column ,but axial-load ratio has less influence .


2019 ◽  
Vol 5 (2) ◽  
Author(s):  
Tetsuaki Takeda

When a depressurization accident of a very-high-temperature reactor (VHTR) occurs, air is expected to enter into the reactor pressure vessel from the breach and oxidize in-core graphite structures. Therefore, in order to predict or analyze the air ingress phenomena during a depressurization accident, it is important to develop a method for the prevention of air ingress during an accident. In particular, it is also important to examine the influence of localized natural convection and molecular diffusion on the mixing process from a safety viewpoint. Experiment and numerical analysis using a three-dimensional (3D) computational fluid dynamics code have been carried out to obtain the mixing process of two-component gases and the flow characteristics of localized natural convection. The numerical model consists of a storage tank and a reverse U-shaped vertical rectangular passage. One sidewall of the high-temperature side vertical passage is heated, and the other sidewall is cooled. The low-temperature vertical passage is cooled by ambient air. The storage tank is filled with heavy gas and the reverse U-shaped vertical passage is filled with a light gas. The result obtained from the 3D numerical analysis was in agreement with the experimental result quantitatively. The two component gases were mixed via molecular diffusion and natural convection. After some time elapsed, natural circulation occurred through the reverse U-shaped vertical passage. These flow characteristics are the same as those of phenomena generated in the passage between a permanent reflector and a pressure vessel wall of the VHTR.


Sign in / Sign up

Export Citation Format

Share Document