2020 ◽  
Vol 640 ◽  
pp. A53
Author(s):  
L. Löhnert ◽  
S. Krätschmer ◽  
A. G. Peeters

Here, we address the turbulent dynamics of the gravitational instability in accretion disks, retaining both radiative cooling and irradiation. Due to radiative cooling, the disk is unstable for all values of the Toomre parameter, and an accurate estimate of the maximum growth rate is derived analytically. A detailed study of the turbulent spectra shows a rapid decay with an azimuthal wave number stronger than ky−3, whereas the spectrum is more broad in the radial direction and shows a scaling in the range kx−3 to kx−2. The radial component of the radial velocity profile consists of a superposition of shocks of different heights, and is similar to that found in Burgers’ turbulence. Assuming saturation occurs through nonlinear wave steepening leading to shock formation, we developed a mixing-length model in which the typical length scale is related to the average radial distance between shocks. Furthermore, since the numerical simulations show that linear drive is necessary in order to sustain turbulence, we used the growth rate of the most unstable mode to estimate the typical timescale. The mixing-length model that was obtained agrees well with numerical simulations. The model gives an analytic expression for the turbulent viscosity as a function of the Toomre parameter and cooling time. It predicts that relevant values of α = 10−3 can be obtained in disks that have a Toomre parameter as high as Q ≈ 10.


Author(s):  
Lewis P. Blunn ◽  
Omduth Coceal ◽  
Negin Nazarian ◽  
Janet F. Barlow ◽  
Robert S. Plant ◽  
...  

AbstractGood representation of turbulence in urban canopy models is necessary for accurate prediction of momentum and scalar distribution in and above urban canopies. To develop and improve turbulence closure schemes for one-dimensional multi-layer urban canopy models, turbulence characteristics are investigated here by analyzing existing large-eddy simulation and direct numerical simulation data. A range of geometries and flow regimes are analyzed that span packing densities of 0.0625 to 0.44, different building array configurations (cubes and cuboids, aligned and staggered arrays, and variable building height), and different incident wind directions ($$0^\circ $$ 0 ∘ and $$45^\circ $$ 45 ∘ with regards to the building face). Momentum mixing-length profiles share similar characteristics across the range of geometries, making a first-order momentum mixing-length turbulence closure a promising approach. In vegetation canopies turbulence is dominated by mixing-layer eddies of a scale determined by the canopy-top shear length scale. No relationship was found between the depth-averaged momentum mixing length within the canopy and the canopy-top shear length scale in the present study. By careful specification of the intrinsic averaging operator in the canopy, an often-overlooked term that accounts for changes in plan area density with height is included in a first-order momentum mixing-length turbulence closure model. For an array of variable-height buildings, its omission leads to velocity overestimation of up to $$17\%$$ 17 % . Additionally, we observe that the von Kármán coefficient varies between 0.20 and 0.51 across simulations, which is the first time such a range of values has been documented. When driving flow is oblique to the building faces, the ratio of dispersive to turbulent momentum flux is larger than unity in the lower half of the canopy, and wake production becomes significant compared to shear production of turbulent momentum flux. It is probable that dispersive momentum fluxes are more significant than previously thought in real urban settings, where the wind direction is almost always oblique.


2009 ◽  
Vol 5 (S265) ◽  
pp. 187-196 ◽  
Author(s):  
Bengt Gustafsson

AbstractDuring the latest decades the number of papers on stellar chemical abundances has increased dramatically. This is basically reflecting the very great achievements in telescope- and spectrometer-construction technology. The analysis of the resulting stellar spectra, however, is still not up to the standard that is offered by the observational methods. Recent significant advances in the analysis methods (i.e., in constructing model atmospheres and model spectra to compare with the observed ones) is reviewed with the emphasis on the application to abundance analysis of late-type stars. It is found that the very considerable progress that have been made beyond mixing-length convection and LTE is a major break-through for physically consistent modeling. Still, however, further steps must be taken, in particular for the cooler stars, before the situation is fully satisifactory.


1972 ◽  
Vol 94 (1) ◽  
pp. 23-28 ◽  
Author(s):  
E. Brundrett ◽  
W. B. Nicoll ◽  
A. B. Strong

The van Driest damped mixing length has been extended to account for the effects of mass transfer through a porous plate into a turbulent, two-dimensional incompressible boundary layer. The present mixing length is continuous from the wall through to the inner-law region of the flow, and although empirical, has been shown to predict wall shear stress and heat transfer data for a wide range of blowing rates.


2014 ◽  
Vol 44 (2) ◽  
pp. 742-763 ◽  
Author(s):  
Yevgenii Rastigejev ◽  
Sergey A. Suslov

Abstract In-depth understanding and accurate modeling of the interaction between ocean spray and a turbulent flow under high wind conditions is essential for improving the intensity forecasts of hurricanes and severe storms. Here, the authors consider the E–ε closure for a turbulent flow model that accounts for the effects of the variation of turbulent energy and turbulent mixing length caused by spray stratification. The obtained analytical and numerical solutions show significant differences between the current E–ε model and the lower-order turbulent kinetic energy (TKE) model considered previously. It is shown that the reduction of turbulent energy and mixing length above the wave crest level, where the spray droplets are generated, that is not accounted for by the TKE model results in a significant suppression of turbulent mixing in this near-wave layer. In turn, suppression of turbulence causes an acceleration of flow and a reduction of the drag coefficient that is qualitatively consistent with field observations if spray is fine (even if its concentration is low) or if droplets are large but their concentration is sufficiently high. In the latter case, spray inertia may become important. This effect is subsequently examined. It is shown that spray inertia leads to the reduction of wind velocity in the close proximity of the wave surface relative to the reference logarithmic profile. However, at higher altitudes the suppression of flow turbulence by the spray still results in the wind acceleration and the reduction of the local drag coefficient.


Sign in / Sign up

Export Citation Format

Share Document