THREE-DIMENSIONAL SIMULATION OF MASS AND HEAT TRANSFER IN DRYING UNSATURATED POROUS MEDIUM

2017 ◽  
Vol 48 (11) ◽  
pp. 985-1005
Author(s):  
Ramzi Rzig ◽  
Nidhal Ben Khedher ◽  
Sassi Ben Nasrallah
Processes ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 786
Author(s):  
Jiedong Ye ◽  
Junshuai Lv ◽  
Dongli Tan ◽  
Zhiqiang Ai ◽  
Zhiqiang Feng

The NH3 uniformity and conversion rate produced by the urea–water solution spray system is an essential factor affecting de-NOx efficiency. In this work, a three-dimensional simulation model was developed with the CFD software and was employed to investigate the effects of two typical injection methods (wall injection and center injection) and three distribution strategies (pre-mixer, post-mixer, pre-mixer, and post-mixer) of two typical mixers on the urea conversion rate and uniformity. The field synergy principle was employed to analyze the heat transfer of different mixer flow fields. The results show that the single mixer has instability in optimizing different injection positions due to different injection methods and injection positions. The dual-mixer is stable in the optimization of the flow field under different conditions. The conclusion of the field synergy theory of the single mixer accords with the simulation result. The Fc of the dual-mixer cases is low, but the NH3 conversion and uniformity index rate are also improved due to the increase in the residence time of UWS.


2019 ◽  
Vol 142 (1) ◽  
Author(s):  
Xiao Cheng ◽  
Huiying Wu

Abstract Pillar microchannel heat sinks have been widely used for chip cooling, while their overall heat transfer performance is restricted by the stagnation flow in pillar wake zone. In this work, a simple but effective method using slit microstructure modified on pillar was proposed to enhance wake zone heat transfer. It enables a special flow path for the incoming fluid that intensively disturbs the wake fluid. To validate the proposed method, a three-dimensional simulation was employed to study the laminar flow and heat transfer characteristics in the slit pillar microchannel. The pillar without slit design was also investigated for comparative analysis. Effects of slit angle (θ), height over diameter ratio (H/D), and blocking ratio (D/W) of a single pillar were systematically studied at the Reynolds numbers of 26–260. Results showed the case with θ = 0 deg always demonstrated lower surface temperature, higher Nusselt number and higher thermal performance index (TPI) compared to other cases with different slit angles at the same conditions. Furthermore, it was interesting to find that the slit configuration was not suitable for long pillar microchannel, but preferred for high blocking ratio pillar microchannel at present ranges (H/D ≤ 1, D/W ≤ 0.5). The slit pillar array microchannel was also explored and observed with improved overall heat transfer performance. The proposed slit microstructure well prevents the heat transfer deterioration in pillar wake zone, which is promisingly to be used for cooling performance improvement of electronic device.


1999 ◽  
Vol 121 (1) ◽  
pp. 50-56 ◽  
Author(s):  
I. Sezai ◽  
A. A. Mohamad

The flow and heat transfer characteristics of impinging laminar jets issuing from rectangular slots of different aspect ratios have been investigated numerically through the solution of three-dimensional Navier-Stokes and energy equations in steady state. The three-dimensional simulation reveals the existence of pronounced streamwise velocity off-center peaks near the impingement plate. Furthermore, the effect of these off-center velocity peaks on the Nusselt number distribution is also investigated. Interesting three-dimensional flow structures are detected which cannot be predicted by two-dimensional simulations.


Sign in / Sign up

Export Citation Format

Share Document