Abstract of "GENERALIZED CORRELATIONS FOR HEAT TRANSFERDETERMINATION IN TURBINE CASCADES"

Author(s):  
Zvonimir Guzovic ◽  
Miroslav Rusevljan ◽  
Branimir Matijasevic
Keyword(s):  
2021 ◽  
Author(s):  
Narmin B. Hushmandi ◽  
Per Askebjer ◽  
Magnus Genrup

Author(s):  
F. Taremi ◽  
S. A. Sjolander ◽  
T. J. Praisner

An experimental investigation of two low-turning (90°) transonic linear turbine cascades was presented in Part I of the paper. Part II examines two high-turning (112°) turbine cascades. The experimental results include total pressure losses, streamwise vorticity and secondary kinetic energy distributions. The measurements were made using a seven-hole pressure probe downstream of the cascades. In addition to the measurements, surface flow visualization was conducted to assist in the interpretation of the flow physics. The turbine cascades in Part II, referred to as SL1F and SL2F, have the same inlet and outlet design flow angles, but different aerodynamic loading levels: SL2F is more highly loaded than SL1F. The surface flow visualization results show evidence of small flow separation on the suction side of both airfoils. At the design conditions (outlet Mach number ≈ 0.8), SL2F exhibits stronger vortical structures and larger secondary velocities than SL1F. The two cascades, however, produce similar row losses based on the measurements at 40% axial chord lengths downstream of the trailing edge. Additional data were collected at off-design outlet Mach numbers of 0.65 and 0.91. As the Mach number is raised, the cascades become more aft-loaded. The absolute blade loadings increase, but the Zweifel coefficients decrease due to higher outlet dynamic pressures. Both profile and secondary losses decrease at higher Mach numbers; the main vortical structures and the corresponding peak losses migrate towards the endwall, and there are reductions in secondary kinetic energy and exit flow angle variations. The streamwise vorticity distributions show smaller peak vorticities associated with the passage and the counter vortices at higher exit Mach numbers. The corner vortex, on the other hand, becomes more intensified, resulting in reduction of flow overturning near the endwall. The results for SL1F and SL2F are compared and contrasted with the results for the lower turning cascades presented in Part I. The possible effects of suction-surface flow separation on profile and secondary losses are discussed in this context. The current research project is part of a larger study concerning the effects of endwall contouring on secondary losses, which will be presented in the near future.


1975 ◽  
Vol 97 (2) ◽  
pp. 189-194 ◽  
Author(s):  
K. Bammert ◽  
P. Zehner

For operation of a gas turbine in single-cycle arrangement with a high-temperature reactor, rupture of a main circuit pipe has to be included in the safety considerations. In the event of such an accident there may be a back flow through the turbo machines or a forward flow up to the choking limit. This paper is a report on tests carried out in a two-dimensional cascade wind tunnel on turbine cascades under back flow conditions. By the example of three selected representative cascades the characteristic features in turbine cascades with back flow are discussed. These cascades are a rotor blade tip section with aerofoil-like profiles and a wide pitch, a stator blade or rotor blade mean section with an usual deflection and a rotor blade root section with a narrow pitch and a large deflection.


Author(s):  
T. Tanuma ◽  
N. Shibukawa ◽  
S. Yamamoto

An implicit time-marching higher-order accurate finite-difference method for solving the two-dimensional compressible Navier-Stokes equations was applied to the numerical analyses of steady and unsteady, subsonic and transonic viscous flows through gas turbine cascades with trailing edge coolant ejection. Annular cascade tests were carried out to verify the accuracy of the present analysis. The unsteady aerodynamic mechanisms associated with the interaction between the trailing edge vortices and shock waves and the effect of coolant ejection were evaluated with the present analysis.


Sign in / Sign up

Export Citation Format

Share Document