Evaluation of the Thermal Hydraulic Performance of Round Tube Metal Foam Heat Exchangers for HVAC Applications

Author(s):  
Henk Huisseune ◽  
Sven De Schampheleire ◽  
Bernd Ameel ◽  
Michel De Paepe
2009 ◽  
Vol 131 (6) ◽  
Author(s):  
Young-Gil Park ◽  
Anthony M. Jacobi

The air-side thermal-hydraulic performance of flat-tube aluminum heat exchangers is studied experimentally for conditions typical to air-conditioning applications, for heat exchangers constructed with serpentine louvered, wavy, and plain fins. Using a closed-loop calorimetric wind tunnel, heat transfer and pressure drop are measured at air face velocities from 0.5 m/s to 2.8 m/s for dry- and wet-surface conditions. Parametric effects related to geometry and operating conditions on heat transfer and friction performance of the heat exchangers are explored. Significant differences in the effect of geometrical parameters are found for dry and wet conditions. For the louver-fin geometry, using a combined database from the present and the previous studies, empirical curve-fits for the Colburn j- and f-factors are developed in terms of a wet-surface multiplier. The wet-surface multiplier correlations fit the present database with rms relative residuals of 21.1% and 24.4% for j and f multipliers, respectively. Alternatively, stand-alone Colburn j and f correlations give rms relative residuals of 22.7% and 29.1%, respectively.


2001 ◽  
Author(s):  
David P. Haack ◽  
Kenneth R. Butcher ◽  
T. Kim ◽  
T. J. Lu

Abstract An overview of open cell metal foam materials with application to advanced heat exchange devices is presented. The metal foam materials considered consist of interconnected cells in a random orientation. Metal foam materials, manufacture and fabrication into complex heat exchange components are described. Experiments with flat foam panels brazed to copper sheets shows increasing heat removal effectiveness with decreasing product pore size at equivalent coolant flow rates. However, the high-pressure drop associated with flow through small pore-size material makes the use of larger pore size material more attractive.


2015 ◽  
Vol 68 (10) ◽  
pp. 1031-1049 ◽  
Author(s):  
Xi Chen ◽  
Fatemeh Tavakkoli ◽  
Kambiz Vafai

Sign in / Sign up

Export Citation Format

Share Document