scholarly journals Thermal-hydraulic performance of metal foam heat exchangers under dry operating conditions

2017 ◽  
Vol 119 ◽  
pp. 222-232 ◽  
Author(s):  
Kashif Nawaz ◽  
Jessica Bock ◽  
Anthony M. Jacobi
2009 ◽  
Vol 131 (6) ◽  
Author(s):  
Young-Gil Park ◽  
Anthony M. Jacobi

The air-side thermal-hydraulic performance of flat-tube aluminum heat exchangers is studied experimentally for conditions typical to air-conditioning applications, for heat exchangers constructed with serpentine louvered, wavy, and plain fins. Using a closed-loop calorimetric wind tunnel, heat transfer and pressure drop are measured at air face velocities from 0.5 m/s to 2.8 m/s for dry- and wet-surface conditions. Parametric effects related to geometry and operating conditions on heat transfer and friction performance of the heat exchangers are explored. Significant differences in the effect of geometrical parameters are found for dry and wet conditions. For the louver-fin geometry, using a combined database from the present and the previous studies, empirical curve-fits for the Colburn j- and f-factors are developed in terms of a wet-surface multiplier. The wet-surface multiplier correlations fit the present database with rms relative residuals of 21.1% and 24.4% for j and f multipliers, respectively. Alternatively, stand-alone Colburn j and f correlations give rms relative residuals of 22.7% and 29.1%, respectively.


Author(s):  
Kashif Nawaz ◽  
Anthony M. Jacobi

In the wake of utilization of novel materials in various thermal applications open cell metal foams have received attention due to their inherent properties such as large surface area to volume ratio and higher thermal conductivity. Additionally, complex tetradecahedron structure promotes mixing and makes them a good candidate for heat transfer applications. In this paper, a relative comparison has been made between the thermal-hydraulic performance of aluminum and copper metal foam heat exchangers with the same geometry under dry and wet operating conditions. Heat exchanger consisting of round tube with annular layer of metal foam have been considered. Experiments have been conducted using a closed-loop wind tunnel to measure the heat transfer performance and pressure drop. The impact of base metal (aluminum and copper) on the heat transfer rate has been evaluated at varying air flow rates and upstream relative humidity. It has been found that due to similar geometry (flow depth, face area, pore size) both aluminum and copper foam samples have comparable pressure drop under dry conditions. However, the pressure gradient was noticeably different for two samples under wet operating conditions. An obvious difference in heat transfer rate for aluminum and copper metal foam heat exchangers was observed under both dry and wet operating conditions. The findings have been explained in terms of the impact of the thermal conductivity of base metal and condensate retention.


2021 ◽  
Vol 23 ◽  
pp. 42-64
Author(s):  
Boris Basok ◽  
Ihor Bozhko ◽  
Maryna Novitska ◽  
Aleksandr Nedbailo ◽  
Myroslav Tkachenko

This article is devoted to the analysis of the heat engineering characteristics of the operation of an Earth-to-Air Heat Exchanger, EAHE, with a circular cross-sectional shape, which is a component of the geothermal ventilation system. The authors analyzed literature sources devoted to the research of heat exchangers of the soil-air type of various designs and for working conditions in various soils. Much attention is paid to the issues of modeling the operation of such heat exchangers and the distinctive features of each of these models. Also important are the results of experimental studies carried out on our own experimental bench and with the help of which the numerical model was validated. The results of these studies are the basis for the development of a method for determining the optimal diameter of an EAHE under operating conditions for soil in Kyiv, Ukraine.


2001 ◽  
Author(s):  
David P. Haack ◽  
Kenneth R. Butcher ◽  
T. Kim ◽  
T. J. Lu

Abstract An overview of open cell metal foam materials with application to advanced heat exchange devices is presented. The metal foam materials considered consist of interconnected cells in a random orientation. Metal foam materials, manufacture and fabrication into complex heat exchange components are described. Experiments with flat foam panels brazed to copper sheets shows increasing heat removal effectiveness with decreasing product pore size at equivalent coolant flow rates. However, the high-pressure drop associated with flow through small pore-size material makes the use of larger pore size material more attractive.


Author(s):  
O. Koshelnik ◽  
S. Hoisan

One of the ways to increase glass furnaces energy efficiency is to apply heat exchangers for flue gases thermal potential utilization. Flue gases losses is up to 25-40 % of the total amount of heat supplied in the furnace. These losses are influences by such factors as fuel type, furnace and burners design and manufactured product type. Regenerative heat exchangers with various types of heat storage packing is more efficient for high-power furnaces. Such types of regenerator checkerwork as Cowper checkerwork, two types of Siemens checkerwork, Lichte checkerwork and combined checkerwork have already been sufficiently researched, successfully applied and widely used for glass furnaces of various designs. All of its are made of standard refractory bricks. Basket checkerwork and cruciform checkerwork that are made of fused-cast molded refractory materials have been widely used recently as well. Further improvement of regenerative heat exchangers thermal efficiency only by replacing the checkerwork does not seem possible unless their size being increased. But this enlarging is not always realizable during the modernization of existing furnaces. From this point of view heat storage elements with a phase transition, where metal salts and their mixtures are used as a fusible agent look promising for glass furnaces. These elements can accumulate additional amount of heat due to phase transition, which allows to increase significantly heat exchanger thermal rating without its size and operating conditions changing. However, it is necessary to carry out additional studies of this type of checkerwork dealing with analysis of complex unsteady heat exchange processes in regenerators and selection of appropriate materials that satisfy the operating conditions of regenerative heat exchangers so that the checkerwork can be widely used for glass furnaces.


2015 ◽  
Vol 68 (10) ◽  
pp. 1031-1049 ◽  
Author(s):  
Xi Chen ◽  
Fatemeh Tavakkoli ◽  
Kambiz Vafai

2021 ◽  
Vol 39 (4) ◽  
pp. 1225-1235
Author(s):  
Ajay K. Gupta ◽  
Manoj Kumar ◽  
Ranjit K. Sahoo ◽  
Sunil K. Sarangi

Plate-fin heat exchangers provide a broad range of applications in many cryogenic industries for liquefaction and separation of gasses because of their excellent technical advantages such as high effectiveness, compact size, etc. Correlations are available for the design of a plate-fin heat exchanger, but experimental investigations are few at cryogenic temperature. In the present study, a cryogenic heat exchanger test setup has been designed and fabricated to investigate the performance of plate-fin heat exchanger at cryogenic temperature. Major parameters (Colburn factor, Friction factor, etc.) that affect the performance of plate-fin heat exchangers are provided concisely. The effect of mass flow rate and inlet temperature on the effectiveness and pressure drop of the heat exchanger are investigated. It is observed that with an increase in mass flow rate effectiveness and pressure drop increases. The present setup emphasis the systematic procedure to perform the experiment based on cryogenic operating conditions and represent its uncertainties level.


Sign in / Sign up

Export Citation Format

Share Document