DUAL ADVANTAGES OF ULTRA FINE CRYSTAL-SIZED ENERGETIC/REACTIVE MATERIAL FORMULATIONS

Author(s):  
Ronald W. Armstrong
Materials ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3464
Author(s):  
Xuan Zou ◽  
Jingyuan Zhou ◽  
Xianwen Ran ◽  
Yiting Wu ◽  
Ping Liu ◽  
...  

Recent studies have shown that the energy release capacity of Polytetrafluoroethylene (PTFE)/Al with Si, and CuO, respectively, is higher than that of PTFE/Al. PTFE/Al/Si/CuO reactive materials with four proportions of PTFE/Si were designed by the molding–sintering process to study the influence of different PTFE/Si mass ratios on energy release. A drop hammer was selected for igniting the specimens, and the high-speed camera and spectrometer systems were used to record the energy release process and the flame spectrum, respectively. The ignition height of the reactive material was obtained by fitting the relationship between the flame duration and the drop height. It was found that the ignition height of PTFE/Al/Si/CuO containing 20% PTFE/Si is 48.27 cm, which is the lowest compared to the ignition height of other Si/PTFE ratios of PTFE/Al/Si/CuO; the flame temperature was calculated from the flame spectrum. It was found that flame temperature changes little for the same reactive material at different drop heights. Compared with the flame temperature of PTFE/Al/Si/CuO with four mass ratios, it was found that the flame temperature of PTFE/Al/Si/CuO with 20% PTFE/Si is the highest, which is 2589 K. The results show that PTFE/Al/Si/CuO containing 20% PTFE/Si is easier to be ignited and has a stronger temperature destruction effect.


1985 ◽  
Vol 88 (2) ◽  
pp. 412-417 ◽  
Author(s):  
Henry C. Bodenheimer ◽  
Colette Charland ◽  
Walter R. Thayer ◽  
Fenton Schaffner ◽  
Parker J. Staples

2017 ◽  
Vol 105 ◽  
pp. 21-31 ◽  
Author(s):  
N.A. Oladoja ◽  
R.O.A. Adelagun ◽  
A.L. Ahmad ◽  
I.A. Ololade

2013 ◽  
Vol 483 ◽  
pp. 75-78
Author(s):  
Xiao Ming Wang ◽  
Sheng Zhu ◽  
Xue Qiang Feng ◽  
Yu Xiang Liu

Numerical simulation of sequential collision behavior of multi-particles during dynamic formation of Al-based coating on magnesium alloy by supersonic particles deposition demonstrated that continuous tamping effect from subsequent sprayed particles improved significantly compression ratio of former deposited particle and promote effectively deformation and spread out. Analysis to morphology and microstructure of Al-based coating on magnesium alloy by SEM and TEM elicited that subsequent sprayed particles generated two effects including erosion and compaction to former deposited layer of the coating, induced formation of high density dislocation, grains refinement and re-crystallization, which played work-hardening strengthening effect and fine crystal strengthening effect to Al-Si coating.


2015 ◽  
Vol 1752 ◽  
pp. 3-14
Author(s):  
Qiuhong Zhang ◽  
Betty T. Quinton ◽  
Bang-Hung Tsao ◽  
James Scofield ◽  
Neil Merrett ◽  
...  

ABSTRACTCarbon nanotubes (CNTs) have unique thermal/electrical/mechanical properties and high aspect ratios. Growth of CNTs directly onto reactive material substrates (such as metals and carbon based foam structures, etc.) to create a micro-carbon composite layer on the surface has many advantages: possible elimination of processing steps and resistive junctions, provision of a thermally conductive transition layer between materials of varying thermal expansion coefficients, etc. Compared to growing CNTs on conventional inert substrates such as SiO2, direct growth of CNTs onto reactive substrates is significantly more challenging. Namely, control of CNT growth, structure, and morphology has proven difficult due to the diffusion of metallic catalysts into the substrate during CNT synthesis conditions. In this study, using a chemical vapor deposition method, uniform CNT layers were successfully grown on copper foil and carbon foam substrates that were pre-coated with an appropriate buffer layer such as Al2O3 or Al. SEM images indicated that growth conditions and, most notably, substrate surface pre-treatment all influence CNT growth and layer structure/morphology. The SEM images and pull-off testing results revealed that relatively strong bonding existed between the CNT layer and substrate material, and that normal interfacial adhesion (0.2‒0.5 MPa) was affected by the buffer layer thickness. Additionally, the thermal properties of the CNT/substrate structure were evaluated using a laser flash technique, which showed that the CNT layer can reduce thermal resistance when used as a thermal interface material between bonded layers.


Sign in / Sign up

Export Citation Format

Share Document