fine crystal
Recently Published Documents


TOTAL DOCUMENTS

73
(FIVE YEARS 10)

H-INDEX

7
(FIVE YEARS 2)

2021 ◽  
Vol 100 (4) ◽  
pp. 16-23
Author(s):  
S.Ye. Kondratyuk ◽  
◽  
V.I. Veis ◽  
Z.V. Parkhomchuk ◽  
V.A. Loktyonov-Remyzovskii ◽  
...  

The effect of overheating of the melt over the equilibrium liquidus in the temperature range 1570 °C – 1670 °C and the rate of its cooling during crystallization and structure formation of castings on the formation of the length and morphology of the main macrostructural zones, grain dispersion, characteristics of the fine crystal structure, hardness and intensity of abrasive wear over the section of 25L steel castings with a differentiated cast structure was investigated. Regular changes of these indicators depending on thermokinetic conditions of crystallization are established. The determining influence of the melt cooling rate on the morphology and dispersion of the cast structure due to different degrees of melt supercooling during crystallization of different structural zones of castings is shown. As the distance from the rapidly cooling surface of the castings and taking into account the increase in the temperature of the melt overheat from 1570 ºC to 1670 ºC, the grain size varies from 5… 7 numbers to 1… 2 numbers, respectively. In the case of normal heat removal rate during crystallization, the grain size in the castings varies from 4… 2 to -1… -2 numbers. The determined characteristics of wear resistance of steel in different structural zones correlate with changes in the characteristics of the cast structure and the cross-sectional strength of castings. The research results open the prospect of developing new foundry technologies for the production of cast products with differential properties for special operating conditions. Keywords: gradient structure, structural zones, melt, wear.


Author(s):  
Nobuya Banno ◽  
Kensuke Kobayashi ◽  
Akira Uchida ◽  
Hitoshi Kitaguchi

AbstractFor more than 30 years, Pb–Bi alloy and Wood's metal (50% Bi, 26.7% Pb, 13.3% Sn, and 10% Cd) have been used as representative superconducting solder intermedia to establish superconducting joints between NbTi and Nb3Sn wires in high-field nuclear magnetic resonance magnet systems. However, the use of Pb and Cd has been severely restricted by environmental regulations, such as the Restriction of Hazardous Substances Directive. Herein, a novel method of forming a superconducting joint between NbTi and Nb3Sn wires without Pb and Cd has been proposed. This approach is based on metallurgical bonding processes using a superconducting Nb-alloy intermedium, whose fine microstructure is maintained even after exposure to temperatures higher than 650 °C. Further, fine crystal defects become sources of magnetic flux pinning centers. Among transition elements close to Nb, Hf is considered the most suitable additive for realizing high-temperature-tolerable (HTT) superconducting Nb-alloy intermedia. Utilizing the HTT characteristic of Nb–Hf, a superconducting joint between Nb3Sn filaments and one end of the Nb–Hf alloy core was created by forming a superconducting Nb3Sn layer at the interface through a chemical reaction. The other end of the Nb–Hf alloy core was cold-pressed with NbTi filaments, to connect their active new surfaces to each other in order to create a superconducting joint. Ultimately, a superconducting joint between NbTi and Nb3Sn wires was realized with a high critical magnetic field (Bc2) of more than 1 T. The formation of the superconducting joint was confirmed by current decay measurements. This method of forming a superconducting joint is promising for application in environmentally friendly nuclear magnetic resonance magnet systems. Graphical abstract


2021 ◽  
Vol 23 (3) ◽  
pp. 112-123
Author(s):  
Tatyana Sablina ◽  
◽  
Irina Sevostyanova ◽  
◽  

Introduction. The practical significance of non-stoichiometric titanium carbides TiCх in various fields of technology and in medicine is expanding. In this regard, it is important to investigate both methods of obtaining titanium carbide powder and its properties in a wide range of stoichiometry. One of the effective ways to influence the physical and mechanical properties of powder systems is its mechanical treatment. Under shock-shear action, which is realized during processing in a ball mill, mechanical energy is transferred to the powder system, as a result of which it is ground, centers with increased activity on newly formed surfaces are formed; phase transformations, crystal lattice deformation, amorphization, formation of defects, etc. are possible. The aim of this work is to study the effect of low-energy mechanical treatment in a ball mill on the structure, phase composition and parameters of the fine crystal structure of non-stoichiometric titanium carbide powder obtained by reduction of titanium oxide with carbon and calcium. Materials and methods. Powder of titanium carbide TiC, obtained by calcium carbonization of titanium oxide was investigated. The powder was treated in a drum type ball mill. The structure of the powders before and after treatment was studied using the Philips SEM 515 scanning electron microscope. The specific surface area was determined by the BET method. The phase composition and parameters of the fine crystal structure of powder materials were investigated by X-ray analyzes. Results and discussion. It was established that an increase of the time of mechanical treatment in a ball mill of a non-stoichiometric titanium carbide powder TiC0.7 leads to an increase in the specific surface area of the powder from 0.6 to 3.4 m2 / g, and the average particle size calculated from it decreases from 2 μm to 360 nm. It is shown that in the process of treatment of the non-stoichiometric titanium carbide TiC0.7 powder, its structural phase state changes. Powder particles consist of two structural components with different atomic ratio of carbon to titanium: TiC0.65 and TiC0.48. Mechanical treatment of titanium carbide powder leads to a decrease in the microstresses of the TiCx crystal lattice and the size of coherently diffracting domains (CDD) from 55 to 30 nm for the TiC0.48 phase. For the TiC0.65 phase, with an increase in the duration of mechanical treatment, as well as for TiC0.48, the size of CDD decreases, and the level of microdistortions of the crystal lattice increases. This indicates that in the process of mechanical treatment, not only the grinding of powder particles occurs, but also an increase in its defects.


2021 ◽  
Vol 13 (4) ◽  
pp. 168781402110131
Author(s):  
Gong Yuling ◽  
Wu Meiping ◽  
Miao Xiaojin ◽  
Cui Chen

All the time, the wear resistance of TC4 titanium alloy restricts its application in friction parts. In order to solve this problem, in this work, CeO2/Ni60A composite coatings (0, 1, 2, 3, 4 wt.% CeO2) were prepared on TC4 titanium alloy by laser cladding technology. The detection and characterization of the coatings were mainly carried out by X-ray diffraction (XRD), Scanning electron microscope (SEM), Energy-dispersive spectrometer, Vickers hardness test, and wear test. The results showed that appropriate proportion of CeO2 powder could effectively reduce the crack sensitivity of Ni60A coating on TC4 substrate. While the amount of CeO2 powder was 3wt.%, there were no obvious cracks, pores, and other defects in the coating. Coatings mainly consisted of Ti2Ni, TiC, TiB2, Ce2O3, and the substrate α–Ti. CeO2 has negligible influence on the composition of the phase, but it significantly increased the absorption rate of the powder to light, promoted the fluidity of the molten pool. Among five coatings, the average hardness of the 3Ce coating was the highest and the highest hardness value could reach 1163.7 HV0.3, which was 3.58 times higher than TC4 substrate, the friction coefficient was 0.307, and the wear rate was 1.11 × 10−5 mm3/N m, which reflected extremely high wear resistance performance. Adding an appropriate amount of CeO2 improved the microstructure of the coating, and realized the fine crystal strengthening of the coating.


2020 ◽  
pp. 80-84
Author(s):  
D. A. Petrochenkov ◽  

Manufactured articles of ammonites have been in increasingly higher demand in the recent decades. Ammonites have appeal for the unique shapes, color and age. The top suppliers of ammonites to the world market are Madagascar, Morocco, Canada and Russia. In Russia, gem-quality ammonites occur in the Saratov Region, apart from other places. The regional open pit mine at the settlement Dubki situated 7.5 km northeastward of Saratov supplies ammonites both to the Russian and global markets. The submicroscopic and electron microprobe analyses presented details of mineral composition and structure of ammonite shells. The test shell fragments included walls and partitions with layers of pyrite. The pyrite layers lay symmetrically relative to the partitions and inside walls of ammonite, and feature pronounced structural zonality. The partitions and walls are adjoined with narrow zones of fine-crystal pyrite. Then, a zone of coarse-crystal pyrite lies, with fragments of colloform pyrite. The gem-quality ammonites have mostly pyrites in their composition (to 96 % by mass) and are connected with the Upper Jurassic deposits. Among other things, ammonites contain aragonite, calcite, apatite, jarosite, gypsum, ferrian carbonate and organic substance. The original aragonite is preserved in walls and partitions of shells. Morphologically, the large prismatic, fine-crystal, colloform and globular species of pyrite are distinguished. Pyrite is actively decomposed by bacteria. The Saratov Region ammonites possess high decorative and processing properties, can be widely used in manufacturing of jewelry and are by-produced in the course of large-scale mining.


Metals ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1236
Author(s):  
Chuanguang Luo ◽  
Huan Li ◽  
Yonglun Song ◽  
Lijun Yang ◽  
Yuanhua Wen

High-strength aluminum alloy fabricated using spray deposition technology possesses many advantages, such as fine crystal grains, low component segregation, uniform microstructure, and small internal stress. In this study, spray-deposited 2195 Al-Cu-Li alloy in forged state was used and welded using the gas tungsten arc welding (GTAW) process to test and verify the features of the fusion joint. Quantitative analysis was carried out to evaluate the relationship between the local microstructures and performances of the fusion joint, which was composed of four zones: weld metal, fusion zone, heat-affected zone, and base metal. The characteristic quantities of each zone, including recrystallized grain fraction, grain sizes, grain misorientation angle, and Vickers hardness, and their distributions were considered as the key factors affecting the performance of the joint because of welding thermal cycle impact on the fusion joint. To recognize the metallurgical characteristics of spray-deposited alloy 2195, a statistical algorithm based on the concept of the Hall–Petch relationship was proposed to validate the actual test results, which include the correlation effects of both the filler wire and welding process. The correlation between the microstructures and performances of several characteristic quantities were evaluated by integrating the above characteristic information of the fusion joint under the strong coupling of multiple factors. Thus, the advantages of weldability of spray-deposited alloy 2195 using GTAW could be understood in detail.


Crystals ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 681 ◽  
Author(s):  
Abdullah Aljaafari ◽  
Ahmed Sedky

Herein, the effect of nanocrystal percentage in bulk-ZnO varistors was studied. The structure of ZnO nanocrystals was examined using X-ray diffraction (XRD) and field-emission scanning electron microscopy (FE-SEM). The XRD studies showed that the nanocrystals were indexed with the hexagonal wurtzite structure of ZnO nanostructures. The average crystallite size deduced from XRD analysis ranged between 135 and 273 nm, eight-fold lower than that of the nanoparticles observed in FE-SEM micrographs (1151–2214 nm). The percentage of nanocrystals added into the ZnO varistor was increased from 0 to 100%. Electrical measurements (I–V profiles) showed that the non-linear region, breakdown field, and activation energy were found to decrease with the addition of ZnO fine crystals up to 10% and then increased upon a further increase in fine crystals. However, the electrical conductivity measured at room temperature was improved, and the highest value of 2.11 × 10−5 was observed for 10% fine crystals and then decreased upon a further increase in the fine crystal concentration in bulk ZnO. The breakdown field decreased with the increase in the percentage of ZnO nanostructures in the varistor up to 10% and then increased upon the further addition of ZnO nanostructures. The nonlinear coefficient (α) was decreased from 18.6 for bulk ZnO and remained close to unity for the samples that contained fine crystals. The electrical conductivity was generally improved with the increase in the concentration of the ZnO fine crystals. The activation energy was found to be 128, 374, and 815 meV for the bulk samples and 164, 369, and 811 meV for the samples that contained 100% fine crystals for the three temperature regions of 300–420, 420–580, and 580–620 K, respectively. These results will provide a pathway toward the determination of a correlation between the electrical and microstructural properties of ZnO-based varistors for future device applications.


2019 ◽  
Vol 1152 ◽  
pp. 9-18
Author(s):  
Motonori Tamura

Using a substrate of AISI 316L austenitic stainless steel, which is used for components in high-pressure hydrogen systems, the hydrogen barrier properties of samples with single-layer coatings of TiC, TiN, and TiAlN as well as a multi-layered coating of TiAlN and TiMoN were evaluated. The ion plating method was used, and coating thicknesses of 2.0–2.6 μm were obtained. Hydrogen permeation tests were carried out under a differential hydrogen pressure of 400 kPa and at a temperature between 573 and 773 K, and the quantities of hydrogen that permeated the samples were measured. This study aimed at elucidating the relationship between the microstructures of the coatings and the hydrogen permeation properties. Coatings of TiC, TiN, TiAlN, and TiAlN/TiMoN facilitated reductions of the hydrogen permeabilities to 1/100 or less of that of the uncoated substrate. The samples coated with TiN and TiC that developed columnar crystals vertical to the substrate exhibited higher hydrogen permeabilities. The experiment confirmed that the coatings composed of fine crystal grains were highly effective as hydrogen barriers, and that this barrier property became even more efficient if multiple layers of the coatings were applied. The crystal grain boundaries of the coating and interfaces of each film in a multi-layered coating may serve as hydrogen trapping sites. We speculate that fine crystal structures with multiple crystal grain boundaries and multi-layered coating interfaces will contribute to the development of hydrogen barriers.


Nanomaterials ◽  
2019 ◽  
Vol 9 (2) ◽  
pp. 206 ◽  
Author(s):  
Qi Jiao ◽  
Qin Chen ◽  
Lian Wang ◽  
Hualin Chen ◽  
Yongjin Li

Polyoxymethylene (POM) blends with excellent stiffness–toughness balance are successfully developed using Tributyl(octyl)phosphonium bis(trifloromethanesulfonyl) imide (TBOP-TFSI), one type of room-temperature ionic liquid, as the nucleating agent. Crystallization behaviors of POM blends have been studied by differential scanning calorimetry (DSC) and polarized light microscopy (PLM). The incorporation of TBOP-TFSI induces the crystal nucleation and fine crystal grain of POM, and also a much shorter hemi-crystalline time with only 0.5 wt% addition. The nucleation effect of ionic liquid leads to considerable improvement in the impact strength of POM blends while not sacrificing its tensile strength. Moreover, antistatic properties with a long-time stable performance are achieved by TBOP-TFSI addition as the electrical resistance reaches 1011 Ω/sq.


Sign in / Sign up

Export Citation Format

Share Document