Cooling a cylindrical cutting tool with cold air

Author(s):  
Azzeddine Hammami ◽  
Zineb Hammami ◽  
Lahouari Boukhris
Keyword(s):  
2017 ◽  
Vol 261 ◽  
pp. 267-274
Author(s):  
Pantelis N. Botsaris ◽  
Chaido Kyritsi ◽  
Dimitris Iliadis

In this paper, there is an attempt to monitor and evaluate machining parameters when turning 34CrNiMo6 material under different cooling and lubrication conditions. The machining parameters concerned are temperature of the cutting tool and the workpiece, level of vibrations of the cutting tool, surface roughness of the workpiece, noise levels of the turning process and current drawn by the main spindle motor. Four different experimental machining scenarios were completed, specifically: conventional wet turning process, dry cutting and two additional modes employing cooling by cold air. Experimental data were acquired and recorded by an optimally designed network of sensors. Experimental data were statistically analyzed in order to reach conclusions. According to the research that has been done, although, overall, minimum cutting tool and workpiece temperatures were observed under wet machining, cold air cooling is capable of achieving comparable cooling results to wet machining. The lowest values of surface roughness were achieved by wet machining, whereas the lowest level of cutting tool vibrations were observed under cold air cooling.


2010 ◽  
Vol 139-141 ◽  
pp. 863-866
Author(s):  
Yu Lin Cai ◽  
Hua Zhang ◽  
Ye Feng Liu ◽  
Huan Huan Zhao ◽  
Jun Yao ◽  
...  

Combining the refrigeration and machining technology, the dry cold air at -35°C was gained. With the injecting feeding manner of the cold air for cutting, all application of the green technology is realized in turning manufacturing trials. In order to clarify the cooling and lubrication mechanism of cryogenic cold air, the cutting temperature, cutting forces, wear of cutting tool and cutting chip have been systematically researched with the help of numerical calculation and experiments. The cooling and lubrication effects, as well as the performance of machining quality improvement, enhanced by the low temperature air injecting, have also been analyzed in detail. The results arc as follows. Temperature measurements at several locations on the cutting tool insert agree with the simulation results. The performance of cooling-air spray jet with 25(Nm3/h ) on reducing the cutting tool temperature achieved a maximum effect


2020 ◽  
Vol 976 ◽  
pp. 133-138
Author(s):  
Shen Yung Lin ◽  
Z.K. Wang

In this study, five different assisted techniques, including without assistance, laser-assisted, flood assisted, MQL-assisted and cold air-assisted were employed for NAK80 mold steel milling. The 18 set experiments were performed in each assisted system but 27 sets were executed in the without assistance situation. Under each assisted milling circumstance, the effects of process parameters on the variations of surface roughness, cutting force, tool wear and surface morphology of the workpiece are thus investigated. Milling experiments of NAK80 mold steel by cutting-tool of extra-fine particle tungsten carbide with TiSiN coating were conducted. And the experiments of the process parameter combinations such as spindle speed, feed rate and radial depth of cut were also planned. The results show that, under the same milling conditions, the surface roughness and cutting force are decreased as the spindle speed is increased, but both of them is increased as the feed rate and radial cutting depth are increased. In addition, the maximum flank wear of the cutting-tool is increased as the spindle speed, feed rate and radial cutting depth are increased. In terms of cutting assistance, the cutting performance exhibited in the cold air-assisted milling prevails over that in milling without assistance as well as with the other each assisted system. As a result, the cutting-tool flank wear, surface roughness and cutting force are all better than the other assisted techniques.


Author(s):  
C. W. McCutchen ◽  
Lois W. Tice

Ultramicrotomists live in a state of guerilla warfare with chatter. This situation is likely to be permanent. We can infer this from the history of machine tools. If set the wrong way for the particular combination of cutting tool and material, most if not all machine tools will chatter.In more than 100 years since machine tools became common, no one has evolved a practical recipe that guarantees avoiding chatter. Rather than follow some single very conservative rule to avoid chatter in all cases, machinists detect it when it happens, and change conditions until it stops. This is possible because they have no trouble telling when their cutting tool is chattering. They can see chatter marks, and they can also hear a sometimes deafening noise.


1998 ◽  
Vol 2 ◽  
pp. 115-122
Author(s):  
Donatas Švitra ◽  
Jolanta Janutėnienė

In the practice of processing of metals by cutting it is necessary to overcome the vibration of the cutting tool, the processed detail and units of the machine tool. These vibrations in many cases are an obstacle to increase the productivity and quality of treatment of details on metal-cutting machine tools. Vibration at cutting of metals is a very diverse phenomenon due to both it’s nature and the form of oscillatory motion. The most general classification of vibrations at cutting is a division them into forced vibration and autovibrations. The most difficult to remove and poorly investigated are the autovibrations, i.e. vibrations arising at the absence of external periodic forces. The autovibrations, stipulated by the process of cutting on metalcutting machine are of two types: the low-frequency autovibrations and high-frequency autovibrations. When the low-frequency autovibration there appear, the cutting process ought to be terminated and the cause of the vibrations eliminated. Otherwise, there is a danger of a break of both machine and tool. In the case of high-frequency vibration the machine operates apparently quiently, but the processed surface feature small-sized roughness. The frequency of autovibrations can reach 5000 Hz and more.


Sign in / Sign up

Export Citation Format

Share Document