Development of endosperm and synthesis of starch in rice grain. III. Starch property as affected by the temperature during grain development.

1990 ◽  
Vol 59 (2) ◽  
pp. 340-345 ◽  
Author(s):  
Guang-Cen HE ◽  
Kiyoshi KOGURE ◽  
Hiroshi SUZUKI
Rice ◽  
2020 ◽  
Vol 13 (1) ◽  
Author(s):  
Ting-Ying Wu ◽  
Marlen Müller ◽  
Wilhelm Gruissem ◽  
Navreet K. Bhullar

Abstract Background Rice is an important food source for humans worldwide. Because of its nutritional and agricultural significance, a number of studies addressed various aspects of rice grain development and grain filling. Nevertheless, the molecular processes underlying grain filling and development, and in particular the contributions of different grain tissues to these processes, are not understood. Main Text Using RNA-sequencing, we profiled gene expression activity in grain tissues comprised of cross cells (CC), the nucellar epidermis (NE), ovular vascular trace (OVT), endosperm (EN) and the aleurone layer (AL). These tissues were dissected using laser capture microdissection (LCM) at three distinct grain development stages. The mRNA expression datasets offer comprehensive and new insights into the gene expression patterns in different rice grain tissues and their contributions to grain development. Comparative analysis of the different tissues revealed their similar and/or unique functions, as well as the spatio-temporal regulation of common and tissue-specific genes. The expression patterns of genes encoding hormones and transporters indicate an important role of the OVT tissue in metabolite transport during grain development. Gene co-expression network prediction on OVT-specific genes identified several distinct and common development-specific transcription factors. Further analysis of enriched DNA sequence motifs proximal to OVT-specific genes revealed known and novel DNA sequence motifs relevant to rice grain development. Conclusion Together, the dataset of gene expression in rice grain tissues is a novel and useful resource for further work to dissect the molecular and metabolic processes during rice grain development.


2018 ◽  
Vol 12 (S4) ◽  
Author(s):  
Fangzhou Shen ◽  
Xueting Wu ◽  
Luoxi Shi ◽  
Hang Zhang ◽  
Yangmin Chen ◽  
...  

2020 ◽  
Author(s):  
Ting-Ying Wu ◽  
Marlen Müller ◽  
Wilhelm Gruissem ◽  
Navreet K. Bhullar

Abstract Background Rice is an important food source for humans worldwide. Because of its nutritional and agricultural significance, a number of studies addressed various aspects of rice grain development and grain filling. Nevertheless, the molecular processes underlying grain filling and development, and in particular in different contributions of grain tissues to these process, are not understood. Main text Using RNA-sequencing, we profiled gene expression activity in grain tissues comprised of cross cells (CC), the nucellar epidermis (NE), ovular vascular trace (OVT), endosperm (EN) and the aleurone layer (AL). These tissues were dissected using laser capture microdissection (LCM) at three distinct grain development stages. The mRNA expression datasets offer comprehensive and new insights into the gene expression patterns in different rice grain tissues and their contributions to grain development. Comparative analysis of the different tissues revealed their similar and/or unique functions, as well as the spatio-temporal regulation of common and tissue-specific genes. The expression patterns of genes encoding hormones and transporters indicate an important role of the OVT tissue in metabolite transport during grain development. Gene co-expression network prediction on OVT-specific genes identified several distinct and common development-specific transcription factors. Further analysis of enriched DNA sequence motifs proximal to OVT-specific genes revealed known and novel DNA sequence motifs relevant to rice grain development. Conclusion Together, the dataset of gene expression in rice grain tissues is a novel and useful resource for further work to dissect the molecular and metabolic processes during rice grain development.


Plants ◽  
2014 ◽  
Vol 3 (1) ◽  
pp. 95-112 ◽  
Author(s):  
Sarah French ◽  
Yousef Abu-Zaitoon ◽  
Md. Uddin ◽  
Karina Bennett ◽  
Heather Nonhebel

2021 ◽  
Vol 12 ◽  
Author(s):  
Wenzhe Liu ◽  
Tongyang Yin ◽  
Yufei Zhao ◽  
Xueqin Wang ◽  
Kailu Wang ◽  
...  

With the intensification of global warming, rice production is facing new challenges. Field evidence indicates that elevated temperature during rice grain-filling leads to the further deterioration of grain quality. In order to clarify the potential regulatory mechanism of elevated temperature on the formation of rice quality, the DIA mass spectrometry method under the background of field warming was conducted to investigate the regulatory effects of high temperature on grain development and material accumulation pathways. The results showed that a total of 840 differentially expressed proteins were identified during the grain-filling process under elevated temperature. These differentially expressed proteins participated in carbon metabolism, amino acid biosynthesis, signal transduction, protein synthesis, and alternately affected the material accumulation of rice grains. The significant up-regulation of PPROL 14E, PSB28, granule-bound starch synthase I, and the significant down-regulation of 26.7 kDa heat shock protein would lead to the component difference in grain starch and storage proteins, and that could be responsible for the degradation of rice quality under elevated temperature. Results suggested that proteins specifically expressed under elevated temperature could be the key candidates for elucidating the potential regulatory mechanism of warming on rice development and quality formation. In-depth study on the metabolism of storage compounds would be contributed in further proposing high-quality cultivation control measures suitable for climate warming.


2021 ◽  
Author(s):  
Mafroz A. Basunia ◽  
Heather M. Nonhebel ◽  
David Backhouse ◽  
Mary McMillan

AbstractEndosperm of rice and other cereals accumulates high concentrations of the predominant in planta auxin, indole-3-acetic acid (IAA) during early grain development. However, IAA signalling and function during endosperm development are poorly understood. Here, we report that OsYUC12 (an auxin biosynthesis gene) and OsIAA29 (encoding a non-canonical AUX/IAA) are both expressed exclusively in grains, reaching a maximum 5 to 6 days after pollination. OsYUC12 expression is localized in the aleurone, sub-aleurone and embryo, whereas OsIAA29 expression is restricted to a narrow strip in the dorsal aleurone, directly under the vascular bundle. Although rice has been reported to lack endosperm transfer cells (ETCs), this region of the aleurone is enriched with sugar transporters and is likely to play a key role in apoplastic nutrient transfer, analogous to ETCs in other cereals. OsIAA29 has orthologues only in grass species; expression of which is also specific to early grain development. OsYUC12 and OsIAA29 are temporally co-expressed with two genes (AL1 and OsPR602) previously linked to the development of dorsal aleurone or ETCs. Also up regulated at the same time are a cluster of MYB-related genes (designated OsMRPLs) homologous to ZmMRP-1, which regulates maize ETC development. Wheat homologues of ZmMRP-1 are also expressed in ETCs. Although previous work has suggested that other cereals do not have orthologues of ZmMRP-1, our work suggests OsIAA29 and OsMRPLs and their homologues in other grasses are part of an auxin-regulated, conserved signalling network involved in the differentiation of cells with ETC-like function in developing cereal grains.Main ConclusionNon-canonical AUX/IAA protein, OsIAA29, and ZmMPR-1 homologues, OsMRPLs, are part of an auxin-related signalling cascade operating in the dorsal aleurone during early rice grain development.


Sign in / Sign up

Export Citation Format

Share Document