scholarly journals Leaf Growth, Gas Exchange and Chlorophyll Fluorescence Parameters in Response to Different Water Deficits in Wheat Cultivars

2011 ◽  
Vol 14 (3) ◽  
pp. 254-259 ◽  
Author(s):  
Xiaoli Wu ◽  
Weikai Bao
2021 ◽  
Vol 49 (3) ◽  
pp. 12421
Author(s):  
Ruonan GENG ◽  
Xinye ZHANG ◽  
Xiaoping FAN ◽  
Qian HU ◽  
Tianhong NI ◽  
...  

To provide references for poplar cultivation in waterlogged prone area of Jianghan Plain of China, the waterlogging tolerance of 15 poplar clones widely cultivated in these areas were evaluated based on their responses to 45-day waterlogging stress followed by 15-day drainage recovery in morphology, growth, biomass accumulation, leaf gas exchange and chlorophyll fluorescence parameters. The results showed that the normal watered seedlings (CK) of the 15 clones grew vigorously during the experiment, and no defoliation and death occurred. For the seedlings under waterlogging treatment (water 10 cm above the soil surface), its morphology changed markedly, including slowing growth, chlorosis and abscission of leaves, development of hypertrophied lenticels and adventitious roots etc. Waterlogging stress significantly inhibited the seedling growth of height and ground diameter, biomass accumulation, as well as leaf gas exchange and chlorophyll fluorescence parameters of the 15 clones with varying degrees. The net photosynthetic rate (Pn), stomatal conductance (Gs), transpiration rate (Tr), intercellular CO2 concentration/ environmental CO2 concentration (Ci/Ca), variable fluorescence (Fv), variable fluorescence/ initial fluorescence (Fv/Fo) and PS Ⅱ primary light energy conversion efficiency (Fv/Fm) decreased gradually with the prolonged waterlogging, and reached their bottom on day 45. During the terminal recovery stage, the leaf gas exchange and chlorophyll fluorescence parameters of the most clones increased, but their recovery abilities were significantly different. At the end of the experiment, the highest survival rates (100%) were observed in DHY, HS-1, HS-2, I-72, I-69, I-63 and NL-895, and the lowest (zero) occurred in XYY. Survival rates of the other clones ranged from 33.33% to 83.33%. Both results of cluster analysis and membership function analysis showed that HS-1, I-69, DHY, NL-895 and HS-2 had the strongest waterlogging tolerance, XYY and HBY were the worst, and the other clones were moderate. These results would provide guidance not only for the selection of cultivated varieties in Jianghan Plain, but also for the selection of hybrid parents for waterlogging resistance breeding.


2013 ◽  
Vol 12 (12) ◽  
pp. 2164-2171 ◽  
Author(s):  
Ye-chun LIN ◽  
Yue-gao HU ◽  
Chang-zhong REN ◽  
Lai-chun GUO ◽  
Chun-long WANG ◽  
...  

Plants ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 518
Author(s):  
Ning Yan ◽  
Xiaolei Gai ◽  
Lin Xue ◽  
Yongmei Du ◽  
John Shi ◽  
...  

Nicotiana tabacum solanesyl diphosphate synthase 1 (NtSPS1) is the key enzyme in solanesol biosynthesis. However, changes in the solanesol content, plant growth, photosynthesis, and metabolome of tobacco plants after NtSPS1 overexpression (OE) have not been previously reported. In the present study, these parameters, as well as photosynthetic gas exchange, chlorophyll content, and chlorophyll fluorescence parameters, were compared between NtSPS1 OE and wild type (WT) lines of tobacco. As expected, NtSPS1 OE significantly increased solanesol content in tobacco leaves. Although NtSPS1 OE significantly increased leaf growth, photosynthesis, and chlorophyll content, the chlorophyll fluorescence parameters in the leaves of the NtSPS1 OE lines were only slightly higher than those in the WT leaves. Furthermore, NtSPS1 OE resulted in 64 differential metabolites, including 30 up-regulated and 34 down-regulated metabolites, between the OE and WT leaves. Pathway enrichment analysis of these differential metabolites identified differentially enriched pathways between the OE and WT leaves, e.g., carbon fixation in photosynthetic organisms. The maximum carboxylation rate of RuBisCO and the maximum rate of RuBP regeneration were also elevated in the NtSPS1 OE line. To our knowledge, this is the first study to confirm the role of NtSPS1 in solanesol biosynthesis and its possible functional mechanisms in tobacco.


2007 ◽  
Vol 7 (6) ◽  
pp. 841-847 ◽  
Author(s):  
Farzad Paknejad ◽  
Mohammad Nasri . ◽  
Hamid Reza Tohidi Mo . ◽  
Hossein Zahedi . ◽  
Majid Jami Alahmadi .

Sign in / Sign up

Export Citation Format

Share Document