Effects of cytokinin on photosynthetic gas exchange, chlorophyll fluorescence parameters, antioxidative system and carbohydrate accumulation in cucumber (Cucumis sativus L.) under low light

2012 ◽  
Vol 35 (5) ◽  
pp. 1427-1438 ◽  
Author(s):  
Ding Xiaotao ◽  
Jiang Yuping ◽  
Wang Hong ◽  
Jin Haijun ◽  
Zhang Hongmei ◽  
...  
2013 ◽  
Vol 85 (2) ◽  
pp. 665-670 ◽  
Author(s):  
DANIEL GONZALEZ-MENDOZA ◽  
FRANCISCO ESPADAS y GIL ◽  
FERNANDO ESCOBOZA-GARCIA ◽  
JORGE M. SANTAMARIA ◽  
OMAR ZAPATA-PEREZ

The effects of copper toxicity on the photosynthetic activities of Avicennia germinans was investigated using two CuSO4 concentrations (0.062 and 0.33 M) added in Hoagland's solution in an aerated hydroponic system. Photosynthesis and chlorophyll fluorescence were measured after 30 h of copper stress. Results obtained in this study show that increasing levels of Cu+2 of 0.062 and 0.33 M Cu+2 resulted in a general reduction of the stomatal conductance (28 and 18%, respectively) and 100% of inhibition of net photosynthesis. Additionally, at these concentrations of Cu+2, reductions of chlorophyll fluorescence parameters were also observed. These changes suggested that the photosynthetic apparatus of Avicennia germinans was the primary target of the Cu+2 action. It is concluded that Cu+2 ions causes a drastic decline in photosynthetic gas exchange and Chlorophyll fluorescence parameters in A. germinans leaves.


2021 ◽  
Vol 49 (3) ◽  
pp. 12421
Author(s):  
Ruonan GENG ◽  
Xinye ZHANG ◽  
Xiaoping FAN ◽  
Qian HU ◽  
Tianhong NI ◽  
...  

To provide references for poplar cultivation in waterlogged prone area of Jianghan Plain of China, the waterlogging tolerance of 15 poplar clones widely cultivated in these areas were evaluated based on their responses to 45-day waterlogging stress followed by 15-day drainage recovery in morphology, growth, biomass accumulation, leaf gas exchange and chlorophyll fluorescence parameters. The results showed that the normal watered seedlings (CK) of the 15 clones grew vigorously during the experiment, and no defoliation and death occurred. For the seedlings under waterlogging treatment (water 10 cm above the soil surface), its morphology changed markedly, including slowing growth, chlorosis and abscission of leaves, development of hypertrophied lenticels and adventitious roots etc. Waterlogging stress significantly inhibited the seedling growth of height and ground diameter, biomass accumulation, as well as leaf gas exchange and chlorophyll fluorescence parameters of the 15 clones with varying degrees. The net photosynthetic rate (Pn), stomatal conductance (Gs), transpiration rate (Tr), intercellular CO2 concentration/ environmental CO2 concentration (Ci/Ca), variable fluorescence (Fv), variable fluorescence/ initial fluorescence (Fv/Fo) and PS Ⅱ primary light energy conversion efficiency (Fv/Fm) decreased gradually with the prolonged waterlogging, and reached their bottom on day 45. During the terminal recovery stage, the leaf gas exchange and chlorophyll fluorescence parameters of the most clones increased, but their recovery abilities were significantly different. At the end of the experiment, the highest survival rates (100%) were observed in DHY, HS-1, HS-2, I-72, I-69, I-63 and NL-895, and the lowest (zero) occurred in XYY. Survival rates of the other clones ranged from 33.33% to 83.33%. Both results of cluster analysis and membership function analysis showed that HS-1, I-69, DHY, NL-895 and HS-2 had the strongest waterlogging tolerance, XYY and HBY were the worst, and the other clones were moderate. These results would provide guidance not only for the selection of cultivated varieties in Jianghan Plain, but also for the selection of hybrid parents for waterlogging resistance breeding.


2013 ◽  
Vol 12 (12) ◽  
pp. 2164-2171 ◽  
Author(s):  
Ye-chun LIN ◽  
Yue-gao HU ◽  
Chang-zhong REN ◽  
Lai-chun GUO ◽  
Chun-long WANG ◽  
...  

PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e9316 ◽  
Author(s):  
Yingling Wan ◽  
Yixuan Zhang ◽  
Min Zhang ◽  
Aiying Hong ◽  
HuiYan Yang ◽  
...  

Insufficient light intensity inhibits the growth of cultivated herbaceous peony and decreases its economic value. Owing to the increased demand for shade-tolerant herbaceous peony, the selection of appropriate parents for hybridization is essential. Paeonia anomala, Paeonia intermedia and Paeonia veitchii can grow under shade conditions in their natural habitats; however, their photosynthetic capacities under shade have not been studied. In this study, we simulated low light intensity (30% sunlight) and evaluated the morphological, photosynthetic and chlorophyll fluorescence parameters of these three species. Moreover, the shade tolerance of these species as well as two common cultivars (Paeonia lactiflora ‘Da Fugui’, which is suitable for solar greenhouse cultivation, and P. lactiflora ‘Qiao Ling’, which is not suitable for solar greenhouse cultivation) was evaluated. The results showed that under shade, the leaf area of P. anomala and P. intermedia increased, the single flowering period of P. intermedia and P. veitchii was prolonged, and the flower color of P. veitchii faded. With respect to P. anomala, P. intermedia and P. veitchii, shade eliminated the photosynthetic ‘lunch break’ phenomenon and decreased photoinhibition at midday. Furthermore, the maximum photochemical efficiency (Fv/Fm) and maximum primary photochemical yield (Fv/Fo) of photosystem II (PSII) in the three species improved significantly, and their changes in light dissipation were different. The shade tolerance of the tested accessions was in the order P. veitchii > P. intermedia > P. anomala > ‘Da Fugui’ > ‘Qiao Ling’, showing that the three wild species were better adapted to low light intensity than the cultivars. Thus, P. anomala, P. intermedia and P. veitchii could potentially be used in the development of shade-tolerant herbaceous peony cultivars.


Plants ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 518
Author(s):  
Ning Yan ◽  
Xiaolei Gai ◽  
Lin Xue ◽  
Yongmei Du ◽  
John Shi ◽  
...  

Nicotiana tabacum solanesyl diphosphate synthase 1 (NtSPS1) is the key enzyme in solanesol biosynthesis. However, changes in the solanesol content, plant growth, photosynthesis, and metabolome of tobacco plants after NtSPS1 overexpression (OE) have not been previously reported. In the present study, these parameters, as well as photosynthetic gas exchange, chlorophyll content, and chlorophyll fluorescence parameters, were compared between NtSPS1 OE and wild type (WT) lines of tobacco. As expected, NtSPS1 OE significantly increased solanesol content in tobacco leaves. Although NtSPS1 OE significantly increased leaf growth, photosynthesis, and chlorophyll content, the chlorophyll fluorescence parameters in the leaves of the NtSPS1 OE lines were only slightly higher than those in the WT leaves. Furthermore, NtSPS1 OE resulted in 64 differential metabolites, including 30 up-regulated and 34 down-regulated metabolites, between the OE and WT leaves. Pathway enrichment analysis of these differential metabolites identified differentially enriched pathways between the OE and WT leaves, e.g., carbon fixation in photosynthetic organisms. The maximum carboxylation rate of RuBisCO and the maximum rate of RuBP regeneration were also elevated in the NtSPS1 OE line. To our knowledge, this is the first study to confirm the role of NtSPS1 in solanesol biosynthesis and its possible functional mechanisms in tobacco.


Sign in / Sign up

Export Citation Format

Share Document