Human-machine interaction force control: using a model-referenced adaptive impedance device to control an index finger exoskeleton

2014 ◽  
Vol 15 (4) ◽  
pp. 275-283 ◽  
Author(s):  
Qian Bi ◽  
Can-jun Yang
Author(s):  
Shan Chen ◽  
Bin Yao ◽  
Zheng Chen ◽  
Xiaocong Zhu ◽  
Shiqiang Zhu

The control objective of exoskeleton for human performance augmentation is to minimize the human machine interaction force while carrying external loads and following human motion. This paper addresses the dynamics and the interaction force control of a 1-DOF hydraulically actuated joint exoskeleton. A spring with unknown stiffness is used to model the human-machine interface. A cascade force control method is adopted with high-level controller generating the reference position command while low level controller doing motion tracking. Adaptive robust control (ARC) algorithm is developed for both two controllers to deal with the effect of parametric uncertainties and uncertain nonlinearities of the system. The proposed adaptive robust cascade force controller can achieve small human-machine interaction force and good robust performance to model uncertainty which have been validated by experiment.


2014 ◽  
Vol 136 (7) ◽  
Author(s):  
Hua Yan ◽  
Canjun Yang ◽  
Yansong Zhang ◽  
Yiqi Wang

This paper outlines an experimentally based design method for a compatible 3-DOF shoulder exoskeleton with an adaptive center of rotation (CoR) by matching the mechanical CoR with the anatomical CoR to reduce human–machine interaction forces and improve comfort during dynamic humeral motion. The spatial–temporal description for anatomical CoR motion is obtained via a specific experimental task conducted on six healthy subjects. The task is comprised of a static section and a dynamic section, both of which are recorded with an infrared motion capture system using body-attached markers. To reduce the influence of human soft tissues, a custom-made four-marker group block was placed on the upper arm instead of using discrete markers. In the static section, the position of anatomical CoR is kept stationary and calculated using a well-known functional method. Based on the static results, the dynamic section determines the statistical relationship between the dynamic CoR position and the humeral orientation using an optimization method when subjects move their upper arm freely in the sagittal and coronal planes. Based on the resolved anatomical CoR motion, a new mechanical CoR model derived from a traditional ball-and-socket joint is applied to match the experimental results as closely as possible. In this mechanical model, the CoR motion in three-dimensional space is adjusted by translating two of the three intersecting joint axes, including the shoulder abduction/adduction and flexion/extension. A set of optimal translation parameters is obtained through proper matching criterion for the two CoRs. Based on the translation parameters, a compatible shoulder exoskeleton was manufactured and compared with a traditional shoulder exoskeleton with a fixed CoR. An experimental test was conducted to validate the CoR motion adaptation ability by measuring the human–machine interaction force during passive shoulder joint motion. The results provide a promising direction for future anthropomorphic shoulder exoskeleton design.


Author(s):  
Shan Chen ◽  
Tenghui Han ◽  
Fangfang Dong ◽  
Lei Lu ◽  
Haijun Liu ◽  
...  

Lower limb exoskeleton which augments the human performance is a wearable human–machine integrated system used to assist people carrying heavy loads. Recently, underactuated lower limb exoskeleton systems with some passive joints become more and more attractive due to the advantages of smaller weight, lower system energy consumption and lower cost. However, because of the less of control inputs, the existed control methods of fully actuated exoskeletons cannot be extended to underactuated systems, which makes the robust controller design of underactuated lower limb exoskeletons becomes more challenged. This article focuses on the high-performance human–machine interaction force control design of underactuated lower limb exoskeletons with passive ankle joint. In order to solve the reduction of control inputs, the holonomic constraint from the wearer is considered, which help transform the dynamics of 3-degree-of-freedom underactuated exoskeleton in joint space into a 2-degree-of-freedom fully actuated system in Cartesian space. A two-level interaction force controller using adaptive robust control algorithm is proposed to effectively address the negative effect of various model uncertainties and external disturbances. In order to facilitate the control parameter selection, a gain tuning method is also presented. Comparative simulations are carried out, which indicate that the proposed two-level interaction force controller achieves smaller interaction force and better robust performance to various modeling errors and disturbances.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Shijia Zha ◽  
Tianyi Li ◽  
Lidan Cheng ◽  
Jihua Gu ◽  
Wei Wei ◽  
...  

The prediction of sensor data can help the exoskeleton control system to get the human motion intention and target position in advance, so as to reduce the human-machine interaction force. In this paper, an improved method for the prediction algorithm of exoskeleton sensor data is proposed. Through an algorithm simulation test and two-link simulation experiment, the algorithm improves the prediction accuracy by 14.23 ± 0.5%, and the sensor data is smooth. Input the predicted signal into the two-link model, and use the calculated torque method to verify the prediction accuracy data and smoothness. The simulation results showed that the algorithm can predict the joint angle of the human body and can be used for the follow-up control of the swinging legs of the exoskeleton.


2021 ◽  
pp. 1-9
Author(s):  
Harshadkumar B. Prajapati ◽  
Ankit S. Vyas ◽  
Vipul K. Dabhi

Face expression recognition (FER) has gained very much attraction to researchers in the field of computer vision because of its major usefulness in security, robotics, and HMI (Human-Machine Interaction) systems. We propose a CNN (Convolutional Neural Network) architecture to address FER. To show the effectiveness of the proposed model, we evaluate the performance of the model on JAFFE dataset. We derive a concise CNN architecture to address the issue of expression classification. Objective of various experiments is to achieve convincing performance by reducing computational overhead. The proposed CNN model is very compact as compared to other state-of-the-art models. We could achieve highest accuracy of 97.10% and average accuracy of 90.43% for top 10 best runs without any pre-processing methods applied, which justifies the effectiveness of our model. Furthermore, we have also included visualization of CNN layers to observe the learning of CNN.


Sign in / Sign up

Export Citation Format

Share Document