scholarly journals Despite Inhibition of Hematopoietic Progenitor Cell Growth In Vitro, the Tyrosine Kinase Inhibitor Imatinib Does Not Impair Engraftment of Human CD133+Cells into NOD/SCIDβ2mNullMice

Stem Cells ◽  
2006 ◽  
Vol 24 (7) ◽  
pp. 1814-1821 ◽  
Author(s):  
Laurence Pirson ◽  
Frédéric Baron ◽  
Nathalie Meuris ◽  
Olivier Giet ◽  
Emilie Castermans ◽  
...  
2021 ◽  
Vol 80 (Suppl 1) ◽  
pp. 392.2-392
Author(s):  
S. Soldano ◽  
P. Montagna ◽  
E. Gotelli ◽  
S. Tardito ◽  
S. Paolino ◽  
...  

Background:Fibroblast-to-myofibroblast transition is one of the fundamental steps involved in the fibrotic process that characterise systemic sclerosis (SSc) [1]. Myofibroblasts are α-smooth muscle actin (αSMA) positive cells that contribute to fibrosis through the excessive synthesis and deposition of extracellular matrix (ECM) proteins, primarily fibronectin (FN) and type I collagen (COL1) [2].Among the cells involved in the fibrotic process of SSc, circulating fibrocytes seem to have an emerging role as an important source of fibroblasts and myofibroblasts [3].Nintedanib is a tyrosine kinase inhibitor approved for the treatment of idiopathic pulmonary fibrosis that interferes with the signalling pathways involved in the pathogenesis of fibrosis (4). Nintedanib was recently demonstrated to have a beneficial effect in patients with interstitial lung disease (ILD) associated with SSc (5).Objectives:To investigate nintedanib effect in inhibiting the in vitro transition of circulating SSc fibrocytes into myofibroblasts and their pro-fibrotic activity.Methods:Circulating fibrocytes were obtained from 14 SSc patients (mean age 64±14 years), who fulfilled the 2013 ACR/EULAR criteria for SSc and that underwent complete disease staging in a day-hospital setting at the Rheumatology Division of Genoa University. Five age-matched healthy subjects (HSs) were also analysed. All SSc patients and HSs signed the informed consent and the local EC approved the study. Peripheral blood mononuclear cells were isolated by density gradient centrifugation and plated on FN-coated dishes. After overnight culture, non-adherent cells were removed, and adherent cells were maintained in growth medium for 8 days (T8) to obtain fibrocytes [6]. T8-cultured SSc fibrocytes were maintained in growth medium (untreated cells) or treated with nintedanib 0.1μM and 1μM for 3 and 24 hours. Fibroblast specific protein-1 (S100A4) and αSMA, as markers of fibroblast/myofibroblast phenotype, together with COL1 and FN, were investigated by qRT-PCR and Western blotting. Non-parametric Mann-Whitney and Wilcoxon tests were used for the statistical analysis.Results:Significantly elevated gene and protein expressions of αSMA, S100A4, COL1 and FN were observed in SSc fibrocytes compared to HS fibrocytes (gene: αSMA p<0.001; others p<0.0001; protein: all p<0.05). In accordance with the antibody positivity for Scl70 and the presence or absence of ILD at CT scan, SSc patients were grouped as either Scl70 positive patients with ILD (Scl70+ILD+) or Scl70 negative patients without ILD (Scl70-ILD-). Significant αSMA, S100A4, COL1 and FN gene expressions were found in fibrocytes from Scl70+ILD+ compared to HS fibrocytes (αSMA p<0.001; others p<0.0001). Moreover, fibrocytes from Scl70+ILD+patients showed a more significant gene expression of fibroblasts/myofibroblasts markers compared to Scl70-ILD-patients (p<0.01 for S100A4), whereas no differences were observed for ECM gene expression.Nintedanib reduced the gene and protein expression of αSMA, COL1 and FN in SSc fibrocytes compared to untreated ones with different statistical significance.Noteworthy, nintedanib significantly downregulated αSMA, S100A4, COL1 and FN gene expression (all p<0.05) in Scl70+ILD+fibrocytes, whereas only that of S100A4 and FN was significantly downregulated (p<0.05) in Scl70-ILD- fibrocytes compared to untreated cells.Conclusion:Nintedanib seems to downregulate in vitro the transition of fibrocytes into myofibroblasts and their pro-fibrotic activity, particularly in cells isolated from Scl70+ILD+SSc patients.References:[1]Cutolo M et al. Exp Rev Clin Immunol. 2019;15:753-64.[2]Van Caam A et al. Front. Immunol. 2018;9:2452.doi:10.3389/fimmu.2018.02452.[3]Distler JH et al. Arthritis Rheumatol. 2017;69:257-67.[4]Distler O et al. New Eng J Med. 2019; 380:2518-28.[5]Maher TB et al. Arthritis Rheumatol.2020.doi:10.1002/art.41576.[6]Cutolo M et al. Arthritis Res Ther. 2018;20:157.doi:10.1186/s13075-018-1652-6.Acknowledgements:We thank Stefano-Lutz Willing for the scientific support through the study.Disclosure of Interests:Stefano Soldano: None declared, Paola Montagna: None declared, Emanuele Gotelli: None declared, Samuele Tardito: None declared, Sabrina Paolino: None declared, Claudio Corallo: None declared, Carmen Pizzorni: None declared, Alberto Sulli: None declared, Carlotta Schenone: None declared, Greta Pacini: None declared, Vanessa Smith: None declared, Maurizio Cutolo Grant/research support from: I received grant/research support from Bristol-Myers Squibb, Boehringer, Celgene


2018 ◽  
Vol 24 (2) ◽  
pp. 267-275 ◽  
Author(s):  
Elena Marinelli Busilacchi ◽  
Andrea Costantini ◽  
Nadia Viola ◽  
Benedetta Costantini ◽  
Jacopo Olivieri ◽  
...  

Blood ◽  
1987 ◽  
Vol 70 (4) ◽  
pp. 1014-1019 ◽  
Author(s):  
C Carlo-Stella ◽  
M Cazzola ◽  
A Gasner ◽  
G Barosi ◽  
L Dezza ◽  
...  

Myelofibrosis with myeloid metaplasia (MMM) is a chronic myeloproliferative disorder due to clonal expansion of a pluripotent hematopoietic progenitor cell with secondary marrow fibrosis. No definitive treatment has as yet been devised for this condition, which shows a marked variability in clinical course. To evaluate whether excessive hematopoietic progenitor cell proliferation could be controlled by recombinant human interferon alpha (rIFN-alpha) and gamma (rIFN-gamma), we studied the effects of these agents on the in vitro growth of pluripotent and lineage-restricted circulating hematopoietic progenitor cells in 18 patients with MMM. A significant increase in the growth (mean +/- 1 SEM) per milliliter of peripheral blood of CFU-GEMM (594 +/- 253), CFU-Mk (1,033 +/- 410), BFU-E (4,799 +/- 2,020) and CFU- GM (5,438 +/- 2,505) was found in patients as compared with normal controls. Both rIFN-alpha and rIFN-gamma (10 to 10(4) U/mL) produced a significant dose-dependent suppression of CFU-GEMM, CFU-Mk, BFU-E, and CFU-GM growth. Concentrations of rIFN-alpha and rIFN-gamma causing 50% inhibition of colony formation were 37 and 163 U/mL for CFU-GEMM, 16 and 69 U/mL for CFU-Mk, 53 and 146 U/mL for BFU-E, and 36 and 187 U/mL for CFU-GM, respectively. A marked synergistic effect was found between rIFN-alpha and rIFN-gamma: combination of the two agents produced inhibitory effects greater than or equivalent to those of 10- to 100- fold higher concentrations of single agents. These studies (a) confirm that circulating hematopoietic progenitors are markedly increased in MMM, (b) indicate that these presumably abnormal progenitors are normally responsive to rIFNs in vitro, and (c) show that IFNs act in a synergistic manner when used in combination. Because rIFN-gamma can downregulate collagen synthesis in vivo, this lymphokine could be particularly useful in the treatment of patients with MMM.


Blood ◽  
1997 ◽  
Vol 90 (9) ◽  
pp. 3296-3303 ◽  
Author(s):  
Kai-Ling Fu ◽  
Jerome R. Lo Ten Foe ◽  
Hans Joenje ◽  
Kathleen W. Rao ◽  
Johnson M. Liu ◽  
...  

Abstract Fanconi anemia (FA) is an autosomal recessive genetic disorder characterized by a variety of physical anomalies, bone marrow failure, and an increased risk for malignancy. FA cells exhibit chromosomal instability and are hypersensitive to DNA cross-linking agents such as mitomycin C (MMC). FA is a clinically heterogeneous disorder and can be functionally divided into at least five different complementation groups (A-E). We previously described the use of a retroviral vector expressing the FAC cDNA in the complementation of mutant hematopoietic cells from FA-C patients. This vector is currently being tested in a clinical trial of ex vivo hematopoietic progenitor cell transduction. The FA-A group accounts for over 65% of all FA cases, and the FAA cDNA was recently identified by both expression and positional cloning techniques. We report here the transduction and phenotypic correction of lymphoblastoid cell lines from four unrelated FA-A patients, using two amphotropic FAA retroviral vectors. Expression of the FAA transgene was adequate to normalize cell growth, cell-cycle kinetics, and chromosomal breakage in the presence of MMC. We then analyzed the effect of retroviral vector transduction on hematopoietic progenitor cell growth. After FAA transduction of mutant progenitor cells, either colony number or colony size increased in the presence of MMC. In addition, FAA but not FAC retroviral transduction markedly improved colony growth of progenitor cells derived from an unclassified FA patient. FAA retroviral vectors should be useful for both complementation studies and clinical trials of gene transduction.


Blood ◽  
2000 ◽  
Vol 96 (9) ◽  
pp. 3195-3199 ◽  
Author(s):  
J. Tyler Thiesing ◽  
Sayuri Ohno-Jones ◽  
Kathryn S. Kolibaba ◽  
Brian J. Druker

Abstract Chronic myelogenous leukemia (CML), a malignancy of a hematopoietic stem cell, is caused by the Bcr-Abl tyrosine kinase. STI571(formerly CGP 57148B), an Abl tyrosine kinase inhibitor, has specific in vitro antileukemic activity against Bcr-Abl–positive cells and is currently in Phase II clinical trials. As it is likely that resistance to a single agent would be observed, combinations of STI571 with other antileukemic agents have been evaluated for activity against Bcr-Abl–positive cell lines and in colony-forming assays in vitro. The specific antileukemic agents tested included several agents currently used for the treatment of CML: interferon-alpha (IFN), hydroxyurea (HU), daunorubicin (DNR), and cytosine arabinoside (Ara-C). In proliferation assays that use Bcr-Abl–expressing cells lines, the combination of STI571 with IFN, DNR, and Ara-C showed additive or synergistic effects, whereas the combination of STI571 and HU demonstrated antagonistic effects. However, in colony-forming assays that use CML patient samples, all combinations showed increased antiproliferative effects as compared with STI571 alone. These data indicate that combinations of STI571 with IFN, DNR, or Ara-C may be more useful than STI571 alone in the treatment of CML and suggest consideration of clinical trials of these combinations.


Digestion ◽  
2005 ◽  
Vol 71 (3) ◽  
pp. 131-140 ◽  
Author(s):  
Brigitte Lankat-Buttgereit ◽  
Dieter Hörsch ◽  
Peter Barth ◽  
Rudolf Arnold ◽  
Silke Blöcker ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document