Phylogeny and taxonomy of the Patagonian Miocene falcon Thegornis musculosus Ameghino, 1895 (Aves: Falconidae)

2011 ◽  
Vol 85 (6) ◽  
pp. 1089-1104 ◽  
Author(s):  
Jorge I. Noriega ◽  
Juan I. Areta ◽  
Sergio F. Vizcaíno ◽  
M. Susana Bargo

The fossil record of the family Falconidae is poor and fragmentary. Extinct representatives from South America include the late early Miocene (Santacrucian) Thegornis musculosus and Thegornis debilis. Both species were originally described as Falconidae and afterwards moved to Accipitridae Circinae or Buteoninae. The analysis of a very well preserved and complete specimen of T. musculosus with similar stratigraphic and geographic provenances of the type material (lower levels of Santa Cruz Formation, coast of Patagonia, Argentina) corroborates the validity of the genus and its falconid affinities. The skull and postcranial morphology exhibit strong resemblances with the open-savannah inhabiting Herpetotheres and the forest-dwelling Micrastur (Herpetotherinae) but differ substantially from Falconinae (Falconini plus Caracarini). Detailed comparisons with a broad arrange of falconiform taxa in a cladistic framework, confirm its phylogenetic placement within the Herpetotherinae and sister to H. cachinnans. The ecotonal margins produced by the vanishing of humid forests that developed during changes in Patagonian plant communities throughout early Neogene times are hypothesized as a plausible scenario to understand the evolution of this basal clade of falcons.

2017 ◽  
Vol 38 (1) ◽  
pp. 15-30 ◽  
Author(s):  
Adriana Albino ◽  
Santiago Brizuela ◽  
Sergio Vizcaíno

Squamates form a substantial part of the present-day South American herpetofauna, and their fossils constitute an indispensable evidence for understanding the origin and evolution of the main taxa. Squamates are relatively common in Miocene localities of Patagonia, especially in levels of the late early Miocene Santa Cruz Formation. In this contribution, remains of the three species of the extinct iguanidErichosaurusAmeghino 1899 (E. diminutus,E. bombimaxillaandE. debilis) are redescribed, and new squamate specimens are reported for first time. The genusErichosaurusis considered invalid.Erichosaurus debilis,E. diminutusand a new specimen are recognized as indeterminate species of the extant polichrotinePristidactylus, whereasE. bombimaxillaremains as an indeterminate iguanid. Snakes are represented by an indeterminate colubrid. All these specimens, together with a tupinambine teiid previously described for the same formation, represent the southernmost fossil record of squamates in South America and indicate the occurrence of the iguanidPristidactylus, the teiidTupinambisand the colubrid snakes south to their present distribution as back as during the early Miocene.


2019 ◽  
Vol 46 (2) ◽  
pp. 433
Author(s):  
Damián Pérez

The scarcely known family Condylocardiidae (Bivalvia: Archiheterodonta) is poorly represented in the fossil record and their living representatives are also poorly known. This work presents a new representative of the family from the early Pliocene of marine terrace of Cerro Laciar (Santa Cruz Province). Carditella pitufina sp. nov. is described and characterized by a shell large for the genus, 15 radial ribs as wide as interspaces, high hinge plate and broad and large hinge teeth. The poor record of the family may be due to an identification bias, probably because the tiny size of specimens and its similarity with carditids. This new species resembles to the living Carditella tegulata from southern Argentina and Chile and they could be closely related. Carditella pitufina sp. nov. represents the most ancient record of Carditella in South America and the most ancient record of Condylocardiidae in Argentina.


2018 ◽  
Vol 35 (3) ◽  
pp. 203-214 ◽  
Author(s):  
Pierre Broly ◽  
María De Lourdes Serrano-Sánchez ◽  
Francisco J. Vega

Currently, the Onisicdea (terrestrial isopods) is a massive Crustacea suborder of more than 3 700 species, but our knowledge of their paleodiversity is poor. In this paper, we present ten fossils of Crinocheta, the largest clade within the Onisicdea, discovered in Early Miocene (23 Ma) amber of Chiapas. We described three new genera and six new species including Palaeolibrinus spinicornis gen. nov. sp. nov., Armadilloniscus miocaenicus sp. nov., Archeostenoniscus robustus gen. nov. sp. nov., Archeostenoniscus mexicanus sp. nov., Palaeospherarmadillo mazanticus gen. nov. sp. nov., and Palaeospherarmadillo rotundus sp. nov. This study represents the first fossil record of the family Detonidae, Olibrinidae, and “Stenoniscidae”. From a paleoenvironmental reconstruction perspective, the oniscidean fauna presented here supports a particularly wet paleoenvironment, under brackish water influence, similar to an estuary.


2015 ◽  
Vol 89 (5) ◽  
pp. 748-761 ◽  
Author(s):  
Sergio E. Miquel ◽  
Pablo E. Rodriguez

AbstractA remarkable fossil assemblage composed of five gastropod taxa is described from the Early Miocene of Santa Cruz (Patagonia, Argentina) in southernmost South America. The assemblage includes extinct and living genera South America, and on geographic distributions and represent background new information on spatial and across time distributions as well as identification of new taxa. A new taxon,Patagocharopa enigmatican. gen. n. sp., is tentatively assigned to Charopidae.Gastrocopta patagonican. sp. (Vertiginidae) represents the oldest record ofGastrocoptain Argentina and the southernmost record for the Americas.Punctum patagonicumn. sp. (Punctidae) represents the first record ofPunctumfor continental South America, and characterized by a protoconch with traces of axial costulae and a teleoconch with strong radial ribs.Zilchogyra miocenican. sp. is the first Miocene record of the charopid genusZilchogyra. Fragments of a possibleScolodonta(Scolodontidae) are recorded. Overall, the assemblage represents an important and useful paleoenvironmental tool. This fauna suggests that a more temperate and humid environment than today—with a more dense vegetation cover—was prevalent at this site during the Early Miocene.


2015 ◽  
pp. 1 ◽  
Author(s):  
Michael S. Engel

A new species of scolebythine wasp (Chrysidoidea: Scolebythidae) is described and figured from a female beautifully preserved in Early Miocene amber from the Dominican Republic.  The specimen is the first fossil record of the extant genus <em>Clystopsenella</em> Kieffer, and is quite similar to the extant <em>Clystopsenella longiventris</em> Kieffer, a species that occurs widely from Brazil to Belize.  <strong><em>Clystopsenella mirabilis</em></strong> Engel, new species, is distinguished from <em>C. longiventris</em> on the basis of size; head, pronotal, and pterostigmal shape; and putative color differences.  The living and fossil diversity of the family is summarized and evolutionary patterns within the clade are discussed.


1993 ◽  
Vol 67 (S29) ◽  
pp. 1-76 ◽  
Author(s):  
Thomas M. Bown ◽  
John G. Fleagle

The family Palaeothentidae contains some of the dentally more specialized of the small-bodied marsupials of South America and was a clade almost equivalent with the Abderitidae in having been the most abundant caenolestoids. They were unquestionably the most diverse, containing two subfamilies, nine genera, and 19 species, with a distribution ranging from Colombia to Tierra del Fuego. The best and most continuous record of the Palaeothentidae is from Patagonian Argentina where eight genera and 17 species are recognized. There, the Palaeothentidae ranged in age from the Deseadan (later Oligocene) through the late Santacrucian (middle Miocene—the Santacrucian record lasting from about 19.4 m.y. to considerably less than 16.05 m.y. before the present). The family appears to have survived longer in Colombia. The palaeothentine Palaeothentes boliviensis (Bolivia) and the incertae sedis genus and species Hondathentes cazador (Colombia) are the only taxa restricted to an extra-Argentine distribution.Two palaeothentid subfamilies are recognized. The subfamily Acdestinae is new and is erected to accommodate four genera and five species of herbivorous to frugivorous palaeothentids known from the Deseadan through the middle–late Santacrucian. Three of those genera are new (Acdestoides, Acdestodon, and Trelewthentes), as are three acdestine species placed in the genera Acdestodon, Trelewthentes, and Acdestis. The largely faunivorous Palaeothentinae includes four genera and 13 species; the genera Propalaeothentes and Carlothentes are new and new species are described for the genera Propalaeothentes (2) and Palaeothentes (3). Carlothentes is named for Ameghino's Deseadan species Epanorthus chubutensis, and Ameghino's genus Pilchenia is resurrected to accommodate Deseadan P. lucina. New species include: Acdestodon bonapartei, Trelewthentes rothi, Acdestis lemairei, Palaeothentes marshalli, P. migueli, P. pascuali, and Propalaeothentes hatcheri.The Palaeothentinae contains more generalized palaeothentid species than does the Acdestinae, but also includes some very specialized forms. The most generalized known palaeothentid is the Colombian Hondathentes cazador. Both the Acdestinae and Palaeothentinae have large- and small-bodied species; Palaeothentes aratae was the largest palaeothentid (about 550 g), and P. pascuali n. sp. the smallest (about 50 g). The oldest known members of both subfamilies consist of five of the six largest palaeothentids.The evolutionary history of the Palaeothentidae is complicated by thick sequences containing no fossils, several lacunae in sequences that yield fossils, and a continent-wide distribution of localities. By far the densest and most continuous record of the family exists in the coastal Santa Cruz Formation of Patagonian Argentina. Three major clades exist within the Palaeothentidae: 1) the incertae sedis species Hondathentes cazador; 2) the Acdestinae; and 3) the Palaeothentinae (including the new genus Propalaeothentes). The evolution of dental characters in these clades is documented with the aid of 719 new specimens (about 80% of the hypodigm of the family), most of which (about 90% of the new specimens) have precise stratigraphic data.Biostratigraphic study of the new samples was assisted by a new technique of temporal analysis of paleosols and by radiometric age determinations, the latter indicating that the upper part of the Pinturas Formation (16.6 Ma) is older than the lower part of the Santa Cruz Formation (16.4 Ma) and that the top of the marine Monte León Formation (Grupo Patagonica) is older than either (19.4 Ma).Fifty-two gnathic and dental characters were used to identify the taxonomy and to reconstruct the phylogeny of the Palaeothentidae. Analysis of sequencing of appearances of derived characters documents rampant convergences at all taxonomic levels and considerable phenotypic plasticity (variable percent representation of different mutable character morphs) in the organization of the palaeothentid dentition. Certain highly generalized character states survive for the duration of the family in some lineages, whereas others are phenotypically lost for a time and then reappear as a minor percentage of character variability. In general, replacement faunas of palaeothentids were morphologically more generalized than their antecedent forms. The high rate of character mutability and the survival and reappearance of generalized dental characters in the Palaeothentidae were probably related to massive events of pyroclastic deposition that periodically caused at least local extinctions of small mammal populations throughout the duration of the Patagonian middle Tertiary. Dental character regression indicates that palaeothentids arose prior to the Deseadan from a relatively large-bodied marsupial having generalized tribosphenic molars with more or less bunodont cusps; probably an unknown member of the Didelphidae.


2018 ◽  
Vol 92 (3) ◽  
pp. 432-441 ◽  
Author(s):  
Leandro M. Pérez ◽  
Juan López-Gappa ◽  
Miguel Griffin

AbstractThe bryozoan genus Aspidostoma Hincks, 1881 has been regarded as the only representative of the Aspidostomatidae Jullien, 1888 in Argentina to date. Its type species, Aspidostoma giganteum (Busk, 1854), is presently distributed in the Magellanic Region (Argentina and Chile) and has been recorded in Oligocene and Miocene fossil deposits of Santa Cruz and Chubut, respectively. New material from San Julián (late Oligocene), Monte León (early Miocene), Chenque (early to middle Miocene), and Puerto Madryn (late Miocene) formations suggests, however, that A. giganteum is not represented in the fossil record. Material from Puerto Madryn Formation previously regarded as A. giganteum is here recognized as Aspidostoma roveretoi new species. Aspidostoma ortmanni Canu, 1904 is revalidated for the species from the San Julián Formation. Aspidostoma armatum new species and Aspidostoma tehuelche new species are introduced for material from the Monte León and Chenque formations, respectively. Aspidostoma incrustans Canu, 1908, from the early Miocene, is redescribed. Melychocella Gordon and Taylor, 1999, which differs from Aspidostoma in having vicarious avicularia and lacking a median ridge and a quadrangular process proximal to the opesia-orifice, is so far represented by three Paleogene species from the Chatham Islands (Southwest Pacific). The material from Monte León allowed us to transfer Aspidostoma flammulum Canu, 1908 to Melychocella, resulting in the new combination Melychocella flammula (Canu, 1908). Melychocella biperforata new species is described from the lower Miocene Monte León and Chenque formations. The presence of Melychocella in the Neogene of Patagonia extends its geographic distribution and its temporal range.UUID: http://zoobank.org/d84df2d8-cab2-4e74-82b8-7c67d938a58f


PeerJ ◽  
2018 ◽  
Vol 6 ◽  
pp. e4633 ◽  
Author(s):  
Michael Haas ◽  
Roger A. Burks ◽  
Lars Krogmann

Jewel wasps (Hymenoptera: Chalcidoidea) are extremely species-rich today, but have a sparse fossil record from the Cretaceous, the period of their early diversification. Three genera and three species,Diversinitus attenboroughigen. & sp. n., Burminata caputaeriagen. & sp. n. andGlabiala barbatagen. & sp. n. are described in the family Diversinitidae fam. n., from Lower Cretaceous Burmese amber. Placement in Chalcidoidea is supported by the presence of multiporous plate sensilla on the antennal flagellum and a laterally exposed prepectus. The new taxa can be excluded from all extant family level chalcidoid lineages by the presence of multiporous plate sensilla on the first flagellomere in both sexes and lack of any synapomorphies. Accordingly, a new family is proposed for the fossils and its probable phylogenetic position within Chalcidoidea is discussed. Morphological cladistic analyses of the new fossils within the Heraty et al. (2013) dataset did not resolve the phylogenetic placement of Diversinitidae, but indicated its monophyly. Phylogenetically relevant morphological characters of the new fossils are discussed with reference to Cretaceous and extant chalcidoid taxa. Along with mymarid fossils and a few species of uncertain phylogenetic placement, the newly described members of Diversinitidae are among the earliest known chalcidoids and advance our knowledge of their Cretaceous diversity.


2021 ◽  
Author(s):  
Siddharth Kulkarni ◽  
Gustavo Hormiga

Hickmania troglodytes is an emblematic cave spider representing a monotypic cribellate spider genus. This is the only Australian lineage of Austrochilidae while the other members of the family are found in southern South America. In addition to being the largest spider in Tasmania, Hickmania is an oddity in Austrochilidae because this is the only lineage in the family bearing posterior book lungs, tarsal spines and an embolar process on male pedipalps. Six-gene Sanger sequences and genome scale data such as ultraconserved elements (UCEs) and transcriptomes have suggested that Hickmania troglodytes is not nested with the family of current classification, Austrochilidae. We studied the phylogenetic placement of Hickmania troglodytes using an increased taxon sample by combining publicly available UCE and UCEs recovered from transcriptomic data in a parsimony and maximum likelihood framework. Based on our phylogenetic results we formally transfer Hickmania troglodytes from Austrochilidae to the family Gradungulidae. The cladistic placement of Hickmania in the family Gradungulidae fits the geographic distribution of both gradungulids (restricted to Australia and New Zealand) and austrochilids (restricted to southern South America) more appropriately.


Author(s):  
Roberto R Pujana ◽  
Damián A Fernández ◽  
Carolina Panti ◽  
Nicolás Caviglia

Abstract We compiled the numerous fossil records (486) assigned to Nothofagaceae including pollen grains (from surface sediments and continental and oceanic borehole cores), leaves, woods and reproductive structures from South America. All the records are revised and the latest systematic treatments and ages of the bearing strata of each record are followed. When possible, we proposed a subgeneric affinity to each record based on updated bibliography. Fossils of three (Nothofagus, Fuscospora and Lophozonia) of the four subgenera are found in similar proportions through time since the Late Cretaceous. Fossils with reliable affinity with subgenus Brassospora were not found in South America. Most of the records are concentrated in the southern tip of South America (Patagonia Region) and nearby areas. After a significant presence of Nothofagaceae in the Cretaceous, the family declined in diversity and abundance in the Palaeocene and then increased from the Eocene to the Miocene. In the Miocene, the records reach their maximum diversity and abundance, and Nothofagaceae usually dominate the assemblages of pollen, leaves and woods from Patagonia. Pliocene Nothofagaceae records are virtually absent, probably because sedimentary rocks of that age are rare in Patagonia. The fossil record for Nothofagaceae varies according to environmental turnover; when tropical/subtropical floras were present in Patagonia in the Palaeocene–early Eocene, Nothofagaceae contracted southwards and when open steppes developed in the Miocene of east Patagonia, Nothofagaceae contracted westward.


Sign in / Sign up

Export Citation Format

Share Document