Phylogenetic revision of the Late Ordovician orthid brachiopod generaPlaesiomysandHebertellafrom Laurentia

2013 ◽  
Vol 87 (6) ◽  
pp. 1107-1128 ◽  
Author(s):  
David F. Wright ◽  
Alycia L. Stigall

The orthidine brachiopod generaPlaesiomysandHebertellaare significant constituents of Late Ordovician benthic marine communities throughout Laurentia. Species-level phylogenetic analyses were conducted on both genera to inform systematic revisions and document evolutionary relationships. Phylogenetic analyses combined discrete and continuous characters, from which character states were determined using a statistical approach, and utilized both cladistic and Bayesian methodologies.Plaesiomys cutterensis,P. idahoensis, andP. occidentalisare herein recognized as distinct species rather than subspecies ofP. subquadratus. Similarly,Hebertella montoyensisandH. prestonensisare recognized as distinct species separate fromH. occidentalis, andH. richmondensisis recognized as a distinct species rather than a geographical variant ofH. alveata.Hebertella subjugatais removed from its tentative synonymy withH. occidentalisand revalidated.The development of species-level evolutionary hypotheses forPlaesiomysandHebertellaprovides a detailed framework for assessing evolutionary and paleobiogeographic patterns of Late Ordovician brachiopods from Laurentia. The geographic range ofHebertellaexpanded throughout Laurentia during the Richmondian into both intracratonic and marginal basins.Plaesiomys subquadratusparticipated in the Late Ordovician Richmondian Invasion. The recovered phylogenetic topology forPlaesiomyssuggests thatP. subquadratusmay have migrated into the Cincinnati region from a basin situated to the paleo-northeast.

Zootaxa ◽  
2019 ◽  
Vol 4555 (4) ◽  
pp. 491
Author(s):  
STEPHEN J. MAXWELL ◽  
AART M. DEKKERS ◽  
TASMIN L. RYMER ◽  
BRADLEY C. CONGDON

Here we evaluate the taxonomy of the marine gastropod genus Laevistrombus Abbott, 1960 and determine that there are five extant species within this genus, three of which occur in the southwest Pacific. Comparative analyses of this complex have been problematic due to the lack of designated type material. Therefore, we present the type material for L. canarium Linnaeus, 1758; L. taeniatus Quoy & Gaimard, 1834; and L. vanikorensis Quoy & Gaimard, 1834. Current taxonomy has L. vanikorensis absorbed within the L. canarium complex. L. taeniatus is generally held to be a synonym of L. turturella Röding, 1789. We demonstrate that both L. taeniatus and L. vanikorensis are distinct species and reinstate both to species level. Our revision also notes the significant variability in early teleoconch structure within the geographic range of L. vanikorensis, and highlights the need for a greater revision of Laevistrombus, given the diversity in early teleoconch morphology present in southwest Pacific species. 


2016 ◽  
Vol 29 (3) ◽  
pp. 185 ◽  
Author(s):  
Charles S. P. Foster ◽  
David J. Cantrill ◽  
Elizabeth A. James ◽  
Anna E. Syme ◽  
Rebecca Jordan ◽  
...  

Pimelea Banks & Sol. ex Gaertn. is a genus of flowering plants comprising an estimated 90 species in Australia and ~35 species in New Zealand. The genus is economically important, with the inflorescences of some species having floricultural applications, and the presence of toxic compounds in several species proving poisonous to livestock. Pimelea grows in a variety of habitats ranging from arid to alpine, suggesting a complicated biogeographic history. The relationships within Pimelea remain largely uncertain, despite previous attempts at clarification using molecular phylogenetics. However, it is clear that Pimelea is closely related to Thecanthes Wikstr., with the two genera comprising the subtribe Pimeleinae. We used Bayesian and maximum-likelihood phylogenetic analyses of four plastid markers (matK, rbcL, rps16, trnL–F) and one nuclear ribosomal marker (ITS) to examine the evolutionary relationships within Pimeleinae. We found strong support for the monophyly of Pimeleinae but, similar to previous studies, Pimelea was paraphyletic with respect to Thecanthes. Our results also indicated that P. longiflora R.Br. subsp. longiflora and P. longiflora subsp. eyrei (F.Muell.) Rye are best considered as distinct species. Therefore, we reduce Thecanthes to synonymy with Pimelea, making the necessary new combination Pimelea filifolia (Rye) C.S.P.Foster et M.J.Henwood (previously Thecanthes filifolia Rye), and also reinstate Pimelea eyrei F.Muell.


2018 ◽  
Author(s):  
Sarah L. Sheffield ◽  
Colin Sumrall

Recent debates over the evolutionary relationships of early echinoderms have relied heavily on morphological evidence from the feeding ambulacral system. Eumorphocystis, a Late Ordovician diploporitan, has been a focus in these debates because it bears ambulacral features that show strong morphological similarity to early crinoid arms. Undescribed and well-preserved specimens of Eumorphocystis from the Bromide Formation (Oklahoma, USA) provide new data illustrating that composite arms supported by a radial plate that bear a triserial arrangement of axial and extraxial components encasing a coelomic extension can also be found in blastozoans. Previous reports have considered these arm structures to be restricted to only crinoids; these combined features have not been previously observed in blastozoan echinoderms. Phylogenetic analyses suggest that Eumorphocystis and crinoids are sister taxa and that shared derived features of these taxa are homologous. This evidence concerning Eumorphocystis’ arms suggests that crinoid arms were derived from a specialized blastozoan ambulacral system that lost feeding brachioles and strongly suggests that crinoids are nested within blastozoans.


2016 ◽  
Vol 90 (5) ◽  
pp. 888-909 ◽  
Author(s):  
Jennifer E. Bauer ◽  
Alycia L. Stigall

AbstractSystematic revision of the Late Ordovician brachiopod genera Eochonetes Reed, 1917 and Thaerodonta Wang, 1949 was conducted utilizing specimen-based morphometric and species-level phylogenetic analyses. Previous studies had recognized Thaerodonta and Eochonetes as either distinct taxonomic entities or synonyms. New multivariate and phylogenetic analyses confirm the synonymy of Thaerodonta with Eochonetes and provide a framework to assess evolutionary and ecological patterns within the clade. Multivariate analyses were employed to delineate species in morphospace and provided information on potential species relationships. Phylogenetic analysis was used to produce an evolutionary framework for taxonomic revision and identify character evolution within the clade. Most species previously assigned to Thaerodonta are transferred to Eochonetes, and three others are excluded from Eochonetes and provisionally referred to other sowerbyellid genera. Three new species (Eochonetes maearum new species, E. voldemortus new species, E. minerva new species) are described, one species (Leptaena saxea Sardeson, 1892) is synonymized with E. recedens Sardeson, 1892, and one subspecies (Thaerodonta mucronata scabra Howe, 1965) is rejected. This study demonstrates that a combination of complementary approaches and data types has the potential to advance interpretations beyond analyses confined to single analytical tools. Specifically, multivariate analyses provide constraints on species boundaries, whereas species-level phylogenetic analyses provide frameworks to examine morphological, ecological, and biogeographic evolution within a clade.


1996 ◽  
Vol 128 (2) ◽  
pp. 245-262 ◽  
Author(s):  
G.T. Harvey

AbstractAllozymes at several polymorphic loci were assayed in larval collections of 12 recognized species and two possible new species of Choristoneura and two species of Archips. Most of the 48 collections came from high density populations, and those of C. fumiferana, C. occidentalis, and C. pinus represented much of the geographic range of these species. Mean percentage heterozygosity ranged from 2.0 to 18.6%, based on nine polymorphic loci. Three loci are sex-linked in C. fumiferana, two in C. pinus and C. occidentalis and probably in some other members of the group. Allozymes of aspartate transaminase (AAT-1) were most varied among the species and permit identification of individual C. fumiferana in better than 95% of cases. Among the group of coniferophagous Choristoneura species genetic distances were small (max. Nei = 0.232); C. fumiferana was the most distinct species. Wagner trees based on modified Rogers’ distances supported the above conclusions but indicated that separations among C. biennis, C. orae, C. occidentalis, C. carnana, C. subretiniana, and the two new species of Choristoneura were very small and probably below the species level, based on the allozymes measured.


2016 ◽  
Author(s):  
Hannah L. Kempf ◽  
◽  
Ashley A. Dineen ◽  
Peter D. Roopnarine ◽  
Carrie L. Tyler

Viruses ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1188
Author(s):  
Renata Carvalho de Oliveira ◽  
Jorlan Fernandes ◽  
Elba Regina de Sampaio Lemos ◽  
Fernando de Paiva Conte ◽  
Rodrigo Nunes Rodrigues-da-Silva

Bats are hosts of a range of viruses, and their great diversity and unique characteristics that distinguish them from all other mammals have been related to the maintenance, evolution, and dissemination of these pathogens. Recently, very divergent hantaviruses have been discovered in distinct species of bats worldwide, but their association with human disease remains unclear. Considering the low success rates of detecting hantavirus RNA in bat tissues and that to date no hantaviruses have been isolated from bat samples, immunodiagnostic tools could be very helpful to understand pathogenesis, epidemiology, and geographic range of bat-borne hantaviruses. In this sense, we aimed to identify in silico immunogenic B-cell epitopes present on bat-borne hantaviruses nucleoprotein (NP) and verify if they are conserved among them and other selected members of Mammantavirinae, using a combination of (the three most used) different prediction algorithms, ELLIPRO, Discotope 2.0, and PEPITO server. To support our data, we in silico modeled 3D structures of NPs from representative members of bat-borne hantaviruses, using comparative and ab initio methods due to the absence of crystallographic structures of studied proteins or similar models in the Protein Data Bank. Our analysis demonstrated the antigenic complexity of the bat-borne hantaviruses group, showing a low sequence conservation of epitopes among members of its own group and a minor conservation degree in comparison to Orthohantavirus, with a recognized importance to public health. Our data suggest that the use of recombinant rodent-borne hantavirus NPs to cross-detect antibodies against bat- or shrew-borne viruses could underestimate the real impact of this virus in nature.


2019 ◽  
Vol 11 (10) ◽  
pp. 2824-2849 ◽  
Author(s):  
Paweł Mackiewicz ◽  
Adam Dawid Urantówka ◽  
Aleksandra Kroczak ◽  
Dorota Mackiewicz

Abstract Mitochondrial genes are placed on one molecule, which implies that they should carry consistent phylogenetic information. Following this advantage, we present a well-supported phylogeny based on mitochondrial genomes from almost 300 representatives of Passeriformes, the most numerous and differentiated Aves order. The analyses resolved the phylogenetic position of paraphyletic Basal and Transitional Oscines. Passerida occurred divided into two groups, one containing Paroidea and Sylvioidea, whereas the other, Passeroidea and Muscicapoidea. Analyses of mitogenomes showed four types of rearrangements including a duplicated control region (CR) with adjacent genes. Mapping the presence and absence of duplications onto the phylogenetic tree revealed that the duplication was the ancestral state for passerines and was maintained in early diverged lineages. Next, the duplication could be lost and occurred independently at least four times according to the most parsimonious scenario. In some lineages, two CR copies have been inherited from an ancient duplication and highly diverged, whereas in others, the second copy became similar to the first one due to concerted evolution. The second CR copies accumulated over twice as many substitutions as the first ones. However, the second CRs were not completely eliminated and were retained for a long time, which suggests that both regions can fulfill an important role in mitogenomes. Phylogenetic analyses based on CR sequences subjected to the complex evolution can produce tree topologies inconsistent with real evolutionary relationships between species. Passerines with two CRs showed a higher metabolic rate in relation to their body mass.


2019 ◽  
Vol 57 (11) ◽  
Author(s):  
Matthew C. Canver ◽  
Tsigereda Tekle ◽  
Samantha T. Compton ◽  
Katrina Callan ◽  
Eileen M. Burd ◽  
...  

ABSTRACT The Staphylococcus intermedius group (SIG) is a collection of coagulase-positive staphylococci consisting of four distinct species, namely, Staphylococcus cornubiensis, Staphylococcus delphini, Staphylococcus intermedius, and Staphylococcus pseudintermedius. SIG members are animal pathogens and rare causes of human infection. Accurate identification of S. pseudintermedius has important implications for interpretation of antimicrobial susceptibility testing data and may be important for other members of the group. Therefore, we sought to evaluate the performance of five commercially available identification platforms with 21 S. delphini isolates obtained from a variety of animal and geographic sources. Here, we show that automated biochemical platforms were unable to identify S. delphini to the species level, a function of its omission from their databases, but could identify isolates to the SIG level with various degrees of success. However, all automated systems misidentified at least one isolate as Staphylococcus aureus. One matrix-assisted laser desorption ionization–time of flight mass spectrometry (MALDI-TOF MS) system was able to identify S. delphini to the species level, suggesting that MALDI-TOF MS is the best option for distinguishing members of the SIG. With the exception of S. pseudintermedius, it is unclear if other SIG members should be routinely identified to the species level; however, as our understanding of their role in animal and human diseases increases, it may be necessary and important to do so.


Zootaxa ◽  
2011 ◽  
Vol 2918 (1) ◽  
pp. 15 ◽  
Author(s):  
I. WESLEY GAPP ◽  
BRUCE S. LIEBERMAN ◽  
MICHAEL C. POPE ◽  
KELLY A. DILLIARD

The Early Cambrian olenelline trilobites are a diverse clade and have been the subject of several phylogenetic analyses. Here, three new species of Bradyfallotaspis Fritz, 1972 (B. coriae, B. nicolascagei, and B. sekwiensis) and one new species of Nevadia Walcott, 1910 (N. saupeae) are described from the Sekwi Formation of the Mackenzie Mountains, Northwest Territories, Canada. In addition, new specimens potentially referable to Nevadia ovalis McMenamin, 1987 were recovered that may expand that species’ geographic range, which was thought to be restricted to Sonora, Mexico. The results of a phylogenetic analysis incorporating several olenelline taxa, including Judomia absita Fritz, 1973 from the Sekwi Formation, are also presented herein. This species has been assigned to various olenelline genera, including Judomia Lermontova, 1951 and Paranevadella Palmer & Repina, 1993. Phylogenetic analysis suggests this species is closely related to Judomia tera Lazarenko, 1960 from Siberia. This phylogenetic relationship provides further support for the hypothesis that a close biogeographic relationship existed between Laurentia and Siberia during the Cambrian.


Sign in / Sign up

Export Citation Format

Share Document