The LD50 for Low-Energy Ultrashort-Pulsed Laser Driven Electron Beam Whole-Body Irradiation of Wistar Rats

2021 ◽  
Author(s):  
Gohar Tsakanova ◽  
Elina Arakelova ◽  
Violetta Ayvazyan ◽  
Zaven Karalyan ◽  
Lusine Matevosyan ◽  
...  

Recently, a new technology of low-energy ultrashort-pulsed electron beam (UPEB) accelerators has been developed opening new directions for radiobiology and biomedical research. The purpose of this study was to reveal the lethal dose, LD50 (lethal dose, 50%) delivered by low-energy UPEB whole-body exposure on an organismal level. Wistar rats were exposed to low-energy UPEB whole-body irradiation with different doses and pulse repetition rates to find the LD50 and in silico computer simulations were performed to conduct numerical dose calculations. Survival rate, body weight and water consumption were monitored over the 30-day observation period postirradiation. The LD50 was observed after a 2 Gy dose and pulse repetition rate of 2 Hz. In this group, 50% of the animals survived 30 days postirradiation. The groups of animals exposed to low-energy UPEB radiation at higher doses and pulse repetition rates demonstrated higher mortality rates. We demonstrated that the LD50 dose for the low-energy UPEB whole body irradiation in Wistar rats corresponds to 2 Gy with a pulse repetition rate of 2 Hz. Moreover, we showed that the pulse repetition rate is a very important parameter in the experiments with UPEB and should be assessed in the experiments with such kind of novel irradiation sources.

Nanomaterials ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1553
Author(s):  
Alexey Rybaltovsky ◽  
Evgeniy Epifanov ◽  
Dmitriy Khmelenin ◽  
Andrey Shubny ◽  
Yuriy Zavorotny ◽  
...  

Two approaches are proposed for the synthesis of bimetallic Au/Ag nanoparticles, using the pulsed laser ablation of a target consisting of gold and silver plates in a medium of supercritical carbon dioxide. The differences between the two approaches related to the field of “green chemistry” are in the use of different geometric configurations and different laser sources when carrying out the experiments. In the first configuration, the Ag and Au targets are placed side-by-side vertically on the side wall of a high-pressure reactor and the ablation of the target plates occurs alternately with a stationary “wide” horizontal beam with a laser pulse repetition rate of 50 Hz. In the second configuration, the targets are placed horizontally at the bottom of a reactor and the ablation of their parts is carried out by scanning from above with a vertical “narrow” laser beam with a pulse repetition rate of 60 kHz. The possibility of obtaining Ag/Au alloy nanoparticles is demonstrated using the first configuration, while the possibility of obtaining “core–shell” bimetallic Au/Ag nanoparticles with a gold core and a silver shell is demonstrated using the second configuration. A simple model is proposed to explain the obtained results.


2000 ◽  
Vol 30 (9) ◽  
pp. 783-786 ◽  
Author(s):  
V M Borisov ◽  
A Yu Vinokhodov ◽  
V A Vodchits ◽  
A V El'tsov ◽  
A S Ivanov

Sign in / Sign up

Export Citation Format

Share Document