Predicting In Vitro Cancer Cell Survival Based on Measurable Cell Characteristics

2019 ◽  
Vol 191 (6) ◽  
pp. 532
Author(s):  
Hakan Oesten ◽  
Cläre von Neubeck ◽  
Aline Jakob ◽  
Wolfgang Enghardt ◽  
Mechthild Krause ◽  
...  
Cancers ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 1366
Author(s):  
Russell Hughes ◽  
Xinyue Chen ◽  
Natasha Cowley ◽  
Penelope D. Ottewell ◽  
Rhoda J. Hawkins ◽  
...  

Metastatic breast cancer in bone is incurable and there is an urgent need to develop new therapeutic approaches to improve survival. Key to this is understanding the mechanisms governing cancer cell survival and growth in bone, which involves interplay between malignant and accessory cell types. Here, we performed a cellular and molecular comparison of the bone microenvironment in mouse models representing either metastatic indolence or growth, to identify mechanisms regulating cancer cell survival and fate. In vivo, we show that regardless of their fate, breast cancer cells in bone occupy niches rich in osteoblastic cells. As the number of osteoblasts in bone declines, so does the ability to sustain large numbers of breast cancer cells and support metastatic outgrowth. In vitro, osteoblasts protected breast cancer cells from death induced by cell stress and signaling via gap junctions was found to provide important juxtacrine protective mechanisms between osteoblasts and both MDA-MB-231 (TNBC) and MCF7 (ER+) breast cancer cells. Combined with mathematical modelling, these findings indicate that the fate of DTCs is not controlled through the association with specific vessel subtypes. Instead, numbers of osteoblasts dictate availability of protective niches which breast cancer cells can colonize prior to stimulation of metastatic outgrowth.


2017 ◽  
Vol 13 (5) ◽  
pp. 3328-3334 ◽  
Author(s):  
Shun-Yao Ko ◽  
Hshin-An Ko ◽  
Tzong-Ming Shieh ◽  
Tzong-Cherng Chi ◽  
Hong-I Chen ◽  
...  

2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Xiaoqian Deng ◽  
Megha Vipani ◽  
Ge Liang ◽  
Divakara Gouda ◽  
Beibei Wang ◽  
...  

Abstract Background Some retrospective and in vitro studies suggest that general anesthetics influence breast cancer recurrence and metastasis. We compared the effects of general anesthetics sevoflurane versus propofol on breast cancer cell survival, proliferation and invasion in vitro. The investigation focused on effects in intracellular Ca2+ homeostasis as a mechanism for general anesthetic-mediated effects on breast cancer cell survival and metastasis. Methods Estrogen receptor-positive (MCF7) and estrogen receptor-negative (MDA-MB-436) human breast cancer cell lines along with normal breast tissue (MCF10A) were used. Cells were exposed to sevoflurane or propofol at clinically relevant and extreme doses and durations for dose- and time-dependence studies. Cell survival, proliferation and migration following anesthetic exposure were assessed. Intracellular and extracellular Ca2+ concentrations were modulated using Ca2+ chelation and a TRPV1 Ca2+ channel antagonist to examine the role of Ca2+ in mediating anesthetic effects. Results Sevoflurane affected breast cancer cell survival in dose-, time- and cell type-dependent manners. Sevoflurane, but not propofol, at equipotent and clinically relevant doses (2% vs. 2 μM) for 6 h significantly promoted breast cell survival in all three types of cells. Paradoxically, extreme exposure to sevoflurane (4%, 24 h) decreased survival in all three cell lines. Chelation of cytosolic Ca2+ dramatically decreased cell survival in both breast cancer lines but not control cells. Inhibition of TRPV1 receptors significantly reduced cell survival in all cell types, an effect that was partially reversed by equipotent sevoflurane but not propofol. Six-hour exposure to sevoflurane or propofol did not affect cell proliferation, metastasis or TRPV1 protein expression in any type of cell. Conclusion Sevoflurane, but not propofol, at clinically relevant concentrations and durations, increased survival of breast cancer cells in vitro but had no effect on cell proliferation, migration or TRPV1 expression. Breast cancer cells require higher cytoplasmic Ca2+ levels for survival than normal breast tissue. Sevoflurane affects breast cancer cell survival via modulation of intracellular Ca2+ homeostasis.


Author(s):  
Chi-Wei Chen ◽  
Raquel Buj ◽  
Erika S. Dahl ◽  
Kelly E. Leon ◽  
Erika L. Varner ◽  
...  

SummaryMacropinocytosis is a nonspecific endocytic process that enhances cancer cell survival under nutrient-poor conditions. Ataxia-Telangiectasia mutated (ATM) is a tumor suppressor that plays a role in cellular metabolic reprogramming. We report that suppression of ATM increases macropinocytosis in an AMPK-dependent manner to promote cancer cell survival in nutrient-poor conditions. Combined inhibition of ATM and macropinocytosis suppressed proliferation and induced cell death both in vitro and in vivo. Metabolite analysis of the ascites and interstitial fluid from tumors indicated decreased branched chain amino acids (BCAAs) in the microenvironment of ATM-inhibited tumors. Supplementation of ATM inhibitor-treated cells with BCAAs abrogated AMPK phosphorylation and macropinocytosis and rescued the cell death that occurs due to combined inhibition of ATM and macropinocytosis. These data reveal a novel molecular basis of ATM-mediated tumor suppression whereby loss of ATM promotes pro-tumorigenic uptake of nutrients to promote cancer cell survival and reveal a metabolic vulnerability of ATM-inhibited cells.


2020 ◽  
Author(s):  
Francesco Roncato ◽  
Ofer Regev ◽  
Sara W. Feigelson ◽  
Sandeep Kumar Yadav ◽  
Lukasz Kaczmarczyk ◽  
...  

AbstractThe mechanisms by which the nuclear lamina of tumor cells controls their migration and survival are poorly understood. Lamin A and its variant lamin C are key nuclear lamina proteins that control nucleus stiffness and chromatin conformation. Downregulation of lamin A/C levels in two metastatic lines, B16F10 melanoma and E0771 breast carcinoma, facilitated cell squeezing through rigid pores, elevated nuclear deformability and reduced heterochromatin. Unexpectedly, the transendothelial migration of both cancer cells in vitro and in vivo, through lung capillaries, was not elevated by lamin A/C knockdown. Both cancer cells with lamin A/C knockdown grew normally in primary tumors and in vitro on rigid surfaces. Strikingly, however, both lamin A/C deficient melanoma and breast cancer cells grew poorly in 3D spheroids expanded in soft agar cultures. Experimental lung metastasis of both lamin A/C knockdown cells was also markedly reduced. Taken together, our results suggest that high content of lamin A/C in multiple cancer cells promotes cancer cell survival and ability to generate lung metastasis without compromising cancer cell emigration from lung vessels.


Sign in / Sign up

Export Citation Format

Share Document