scholarly journals Nuclear lamin A/C promotes cancer cell survival and lung metastasis without restricting transendothelial migration

2020 ◽  
Author(s):  
Francesco Roncato ◽  
Ofer Regev ◽  
Sara W. Feigelson ◽  
Sandeep Kumar Yadav ◽  
Lukasz Kaczmarczyk ◽  
...  

AbstractThe mechanisms by which the nuclear lamina of tumor cells controls their migration and survival are poorly understood. Lamin A and its variant lamin C are key nuclear lamina proteins that control nucleus stiffness and chromatin conformation. Downregulation of lamin A/C levels in two metastatic lines, B16F10 melanoma and E0771 breast carcinoma, facilitated cell squeezing through rigid pores, elevated nuclear deformability and reduced heterochromatin. Unexpectedly, the transendothelial migration of both cancer cells in vitro and in vivo, through lung capillaries, was not elevated by lamin A/C knockdown. Both cancer cells with lamin A/C knockdown grew normally in primary tumors and in vitro on rigid surfaces. Strikingly, however, both lamin A/C deficient melanoma and breast cancer cells grew poorly in 3D spheroids expanded in soft agar cultures. Experimental lung metastasis of both lamin A/C knockdown cells was also markedly reduced. Taken together, our results suggest that high content of lamin A/C in multiple cancer cells promotes cancer cell survival and ability to generate lung metastasis without compromising cancer cell emigration from lung vessels.

Cancers ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 2383
Author(s):  
Francesco Roncato ◽  
Ofer Regev ◽  
Sara W. Feigelson ◽  
Sandeep Kumar Yadav ◽  
Lukasz Kaczmarczyk ◽  
...  

The mechanisms by which the nuclear lamina of tumor cells influences tumor growth and migration are highly disputed. Lamin A and its variant lamin C are key lamina proteins that control nucleus stiffness and chromatin conformation. Downregulation of lamin A/C in two prototypic metastatic lines, B16F10 melanoma and E0771 breast carcinoma, facilitated cell squeezing through rigid pores, and reduced heterochromatin content. Surprisingly, both lamin A/C knockdown cells grew poorly in 3D spheroids within soft agar, and lamin A/C deficient cells derived from spheroids transcribed lower levels of the growth regulator Yap1. Unexpectedly, the transendothelial migration of both cancer cells in vitro and in vivo, through lung capillaries, was not elevated by lamin A/C knockdown and their metastasis in lungs was even dramatically reduced. Our results are the first indication that reduced lamin A/C content in distinct types of highly metastatic cancer cells does not elevate their transendothelial migration (TEM) capacity and diapedesis through lung vessels but can compromise lung metastasis at a post extravasation level.


Cancers ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 1366
Author(s):  
Russell Hughes ◽  
Xinyue Chen ◽  
Natasha Cowley ◽  
Penelope D. Ottewell ◽  
Rhoda J. Hawkins ◽  
...  

Metastatic breast cancer in bone is incurable and there is an urgent need to develop new therapeutic approaches to improve survival. Key to this is understanding the mechanisms governing cancer cell survival and growth in bone, which involves interplay between malignant and accessory cell types. Here, we performed a cellular and molecular comparison of the bone microenvironment in mouse models representing either metastatic indolence or growth, to identify mechanisms regulating cancer cell survival and fate. In vivo, we show that regardless of their fate, breast cancer cells in bone occupy niches rich in osteoblastic cells. As the number of osteoblasts in bone declines, so does the ability to sustain large numbers of breast cancer cells and support metastatic outgrowth. In vitro, osteoblasts protected breast cancer cells from death induced by cell stress and signaling via gap junctions was found to provide important juxtacrine protective mechanisms between osteoblasts and both MDA-MB-231 (TNBC) and MCF7 (ER+) breast cancer cells. Combined with mathematical modelling, these findings indicate that the fate of DTCs is not controlled through the association with specific vessel subtypes. Instead, numbers of osteoblasts dictate availability of protective niches which breast cancer cells can colonize prior to stimulation of metastatic outgrowth.


2018 ◽  
Vol 18 (4) ◽  
pp. 591-596 ◽  
Author(s):  
Domingo Sanchez Ruiz ◽  
Hella Luksch ◽  
Marco Sifringer ◽  
Achim Temme ◽  
Christian Staufner ◽  
...  

Background: Glutamate receptors are widely expressed in different types of cancer cells. α-Amino-3- hydroxy-5-methyl-4-isoxazolepropionate (AMPA) receptors are ionotropic glutamate receptors which are coupled to intracellular signaling pathways that influence cancer cell survival, proliferation, and migration. Blockade of AMPA receptors by pharmacologic compounds may potentially constitute an effective tool in anticancer treatment strategies. Method: Here we investigated the impact of the AMPA receptor antagonist CFM-2 on the expression of the protein survivin, which is known to promote cancer cell survival and proliferation. We show that CFM-2 inhibits survivin expression at mRNA and protein levels and decreases the viability of cancer cells. Using a stably transfected cell line which overexpresses survivin, we demonstrate that over-expression of survivin enhances cancer cell viability and attenuates CFM-2–mediated inhibition of cancer cell growth. Result: These findings point towards suppression of survivin expression as a new mechanism contributing to anticancer effects of AMPA antagonists.


Nutrients ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 1792 ◽  
Author(s):  
Asma Ahmed AlGhamdi ◽  
Mohammed Razeeth Shait Mohammed ◽  
Mazin A. Zamzami ◽  
Abdulrahman L. Al-Malki ◽  
Mohamad Hasan Qari ◽  
...  

Thymoquinone (TQ), a naturally occurring anticancer compound extracted from Nigella sativa oil, has been extensively reported to possess potent anti-cancer properties. Experimental studies showed the anti-proliferative, pro-apoptotic, and anti-metastatic effects of TQ on different cancer cells. One of the possible mechanisms underlying these effects includes alteration in key metabolic pathways that are critical for cancer cell survival. However, an extensive landscape of the metabolites altered by TQ in cancer cells remains elusive. Here, we performed an untargeted metabolomics study using leukemic cancer cell lines during treatment with TQ and found alteration in approximately 335 metabolites. Pathway analysis showed alteration in key metabolic pathways like TCA cycle, amino acid metabolism, sphingolipid metabolism and nucleotide metabolism, which are critical for leukemic cell survival and death. We found a dramatic increase in metabolites like thymine glycol in TQ-treated cancer cells, a metabolite known to induce DNA damage and apoptosis. Similarly, we observed a sharp decline in cellular guanine levels, important for leukemic cancer cell survival. Overall, we provided an extensive metabolic landscape of leukemic cancer cells and identified the key metabolites and pathways altered, which could be critical and responsible for the anti-proliferative function of TQ.


2021 ◽  
Author(s):  
Julio Aguirre-Ghiso ◽  
Ana Rita Nobre ◽  
Erica Dalla ◽  
Jihong Yang ◽  
Xin Huang ◽  
...  

Abstract Increasing evidence shows that cancer cells can disseminate from early-evolved primary lesions much earlier than the classical metastasis models predicted. It is thought that a state of early disseminated cancer cell (early DCC) dormancy can precede genetic maturation of DCCs and metastasis initiation. Here we reveal at single cell resolution a previously unrecognized role of mesenchymal- and pluripotency-like programs in coordinating early cancer cell spread and a long-lived dormancy program in early DCCs. Using in vitro and in vivo models of invasion and metastasis, single cell RNA sequencing and human sample analysis, we provide unprecedented insight into how early DCC heterogeneity and plasticity control the timing of reactivation. We identify in early lesions and early DCCs the transcription factor ZFP281 as an inducer of mesenchymal- and primed pluripotency-like programs, which is absent in advanced primary tumors and overt metastasis. ZFP281 not only controls the early spread of cancer cells but also locks early DCCs in a prolonged dormancy state by preventing the acquisition of an epithelial-like proliferative program and consequent metastasis outgrowth. Thus, ZFP281-driven dormancy of early DCCs may be a rate-limiting step in metastatic progression functioning as a first barrier that DCCs must overcome to then undergo genetic maturation.


2019 ◽  
Vol 191 (6) ◽  
pp. 532
Author(s):  
Hakan Oesten ◽  
Cläre von Neubeck ◽  
Aline Jakob ◽  
Wolfgang Enghardt ◽  
Mechthild Krause ◽  
...  

2017 ◽  
Vol 13 (5) ◽  
pp. 3328-3334 ◽  
Author(s):  
Shun-Yao Ko ◽  
Hshin-An Ko ◽  
Tzong-Ming Shieh ◽  
Tzong-Cherng Chi ◽  
Hong-I Chen ◽  
...  

2009 ◽  
Vol 20 (8) ◽  
pp. 2207-2217 ◽  
Author(s):  
Justin M. Drake ◽  
Garth Strohbehn ◽  
Thomas B. Bair ◽  
Jessica G. Moreland ◽  
Michael D. Henry

Metastatic colonization involves cancer cell lodgment or adherence in the microvasculature and subsequent migration of those cells across the endothelium into a secondary organ site. To study this process further, we analyzed transendothelial migration of human PC-3 prostate cancer cells in vitro. We isolated a subpopulation of cells, TEM4-18, that crossed an endothelial barrier more efficiently, but surprisingly, were less invasive than parental PC-3 cells in other contexts in vitro. Importantly, TEM4-18 cells were more aggressive than PC-3 cells in a murine metastatic colonization model. Microarray and FACS analysis of these cells showed that the expression of many genes previously associated with leukocyte trafficking and cancer cell extravasation were either unchanged or down-regulated. Instead, TEM4-18 cells exhibited characteristic molecular markers of an epithelial-to-mesenchymal transition (EMT), including frank loss of E-cadherin expression and up-regulation of the E-cadherin repressor ZEB1. Silencing ZEB1 in TEM4-18 cells resulted in increased E-cadherin and reduced transendothelial migration. TEM4-18 cells also express N-cadherin, which was found to be necessary, but not sufficient for increased transendothelial migration. Our results extend the role of EMT in metastasis to transendothelial migration and implicate ZEB1 and N-cadherin in this process in prostate cancer cells.


2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Xiaoqian Deng ◽  
Megha Vipani ◽  
Ge Liang ◽  
Divakara Gouda ◽  
Beibei Wang ◽  
...  

Abstract Background Some retrospective and in vitro studies suggest that general anesthetics influence breast cancer recurrence and metastasis. We compared the effects of general anesthetics sevoflurane versus propofol on breast cancer cell survival, proliferation and invasion in vitro. The investigation focused on effects in intracellular Ca2+ homeostasis as a mechanism for general anesthetic-mediated effects on breast cancer cell survival and metastasis. Methods Estrogen receptor-positive (MCF7) and estrogen receptor-negative (MDA-MB-436) human breast cancer cell lines along with normal breast tissue (MCF10A) were used. Cells were exposed to sevoflurane or propofol at clinically relevant and extreme doses and durations for dose- and time-dependence studies. Cell survival, proliferation and migration following anesthetic exposure were assessed. Intracellular and extracellular Ca2+ concentrations were modulated using Ca2+ chelation and a TRPV1 Ca2+ channel antagonist to examine the role of Ca2+ in mediating anesthetic effects. Results Sevoflurane affected breast cancer cell survival in dose-, time- and cell type-dependent manners. Sevoflurane, but not propofol, at equipotent and clinically relevant doses (2% vs. 2 μM) for 6 h significantly promoted breast cell survival in all three types of cells. Paradoxically, extreme exposure to sevoflurane (4%, 24 h) decreased survival in all three cell lines. Chelation of cytosolic Ca2+ dramatically decreased cell survival in both breast cancer lines but not control cells. Inhibition of TRPV1 receptors significantly reduced cell survival in all cell types, an effect that was partially reversed by equipotent sevoflurane but not propofol. Six-hour exposure to sevoflurane or propofol did not affect cell proliferation, metastasis or TRPV1 protein expression in any type of cell. Conclusion Sevoflurane, but not propofol, at clinically relevant concentrations and durations, increased survival of breast cancer cells in vitro but had no effect on cell proliferation, migration or TRPV1 expression. Breast cancer cells require higher cytoplasmic Ca2+ levels for survival than normal breast tissue. Sevoflurane affects breast cancer cell survival via modulation of intracellular Ca2+ homeostasis.


Sign in / Sign up

Export Citation Format

Share Document