scholarly journals Zoledronic acid cooperates with a cyclooxygenase-2 inhibitor and gefitinib in inhibiting breast and prostate cancer

2005 ◽  
Vol 12 (4) ◽  
pp. 1051-1058 ◽  
Author(s):  
Davide Melisi ◽  
Rosa Caputo ◽  
Vincenzo Damiano ◽  
Roberto Bianco ◽  
Bianca Maria Veneziani ◽  
...  

Biphosphonates (BPs) are widely used to inhibit osteoclastic activity in malignant diseases such as bone metastatic breast and prostate carcinoma. Recent studies reported that BPs could also cause a direct antitumor effect, probably due to their ability to interfere with several intracellular signalling molecules. The enzyme cyclooxygenase-2 (COX-2) and the epidermal growth factor receptor (EGFR) play an important role in the control of cancer cell growth and inhibitors of COX-2 and EGFR have shown antitumor activity in vitro and in vivo in several tumor types. We, and others, have previously shown that EGFR and COX-2 may be directly related to each other and that their selective inhibitors may have a cooperative effect. In the present study we have evaluated the combined effect of zoledronic acid, the most potent nitrogen-containing BP, with the COX-2 inhibitor SC-236 and the selective EGFR-tyrosine kinase inhibitor gefitinib, on breast and prostate cancer models in vitro and in xenografted nude mice. We show that combination of zoledronic acid with SC-236 and gefitinib causes a cooperative antitumor effect accompanied by induction of apoptosis and regulation of the expression of mitogenic factors, proangiogenic factors and cell cycle controllers both in vitro and in xenografted nude mice. The modulatory effect on protein expression and the inhibitory effect on tumor growth is much more potent when the three agents are used together. Since studies are ongoing to explore the antitumor effect of zoledronic acid, our results provide new insights into the mechanism of action of these agents and a novel rationale to translate this feasible combination treatment strategy into a clinical setting.

2020 ◽  
Vol 38 (15_suppl) ◽  
pp. e24144-e24144
Author(s):  
Heng Yang ◽  
Randall W Knoebel ◽  
Sandeep Parsad ◽  
Emma Carroll ◽  
Walter Michael Stadler

e24144 Background: Zoledronic acid (ZA) and denosumab are both bone-modifying agents (BMAs) approved for use in patients with bone metastases with breast or prostate cancer as well as patients who are receiving aromatase inhibitors (breast cancer) or androgen deprivation therapy (prostate cancer). There are various frequencies of administration, doses, and duration of these agents depending on indication and extent of disease. Currently there is data to show that ZA can be given every 3 months in patients with metastatic breast and prostate cancer, however, there is no data that clearly indicates that denosumab every 3 months is non-inferior to every 28 days. This study aimed to analyze current prescribing patterns of ZA and denosumab in metastatic breast cancer and metastatic castration resistant prostate cancer patients at The University of Chicago Medicine (UCM). Methods: This was a retrospective study of 80 patients who received at least one dose of ZA or denosumab between July 1st 2018 to June 30th 2019 from UCM outpatient oncology clinic for the purpose of treating metastatic breast cancer or metastatic castration resistant prostate cancer in conjunction with standard antineoplastic therapy. All included patients must have bone metastases. Patients were divided into four groups by disease state (breast or prostate cancer) and BMA agent (ZA or denosumab). The primary outcome was BMA therapy adherence rate, which was defined by those who received greater than or equal to 80% of appropriately scheduled doses. Descriptive statistics were used for skeletal-related events (SREs) and BMA associated adverse effects. Results: Patients who received ZA achieved higher adherence rates (100% breast, 86% prostate) compared to patients that received denosumab (63% breast, 23% prostate). The most common reason for the lower adherence rate in denosumab groups was scheduling convenience. During the study period, there were 3, 0, 2 and 5 patients had SREs in the above four groups respectively. The predominant adverse event across all groups was hypocalcemia and two patients with prostate cancer on denosumab developed osteonecrosis of the jaw. The cost analysis showed using ZA as primary BMA agent might save up to 2.5 million dollars per year at UCM. Conclusions: The use ofZA was associated with higher adherence rates compared to denosumab. Implementing a pharmacy driven protocol for ZA use for patients with metastatic breast and prostate cancer may improve BMA regimen adherence rates and significantly reduce costs.


2013 ◽  
Vol 14 (7) ◽  
pp. 13577-13591 ◽  
Author(s):  
Wennan Zhao ◽  
Wenzhi Guo ◽  
Qianxiang Zhou ◽  
Sheng-Nan Ma ◽  
Ran Wang ◽  
...  

2016 ◽  
Vol 11 (2) ◽  
pp. 378
Author(s):  
Jin-Jun Sun ◽  
Shi-Feng Kan ◽  
Guan-Xing Sun

<p class="Abstract">We tried a new method of prostate cancer treatment by inducing<em> in vitro</em> differentiation which resulted in reduction of cancer cells growth. A protein kinase inhibitor, midostaurin's ability to trigger the human prostate cancer cell line, DU145 to segregate into nerve cells was studied. Midostaurin (100 nM) suppressed the growth of DU145 cells but without change in the number of dead cells. Midostaurin started to extend neurites on DU145 cells after 24 hours and differentiated into nerve cells by 72 hours. The microtubule was stabilized by tau protein and its mRNA expression showed time-dependent increase in midostaurin-treated DU145 cells. At the same time, the amount of acetylcholinesterase was also increased. The midostaurin-treated DU145 cells showed 40% less activity than control in the colony forming assay. The results suggests that midostaurin can induce differentiation of DU145 cells into nerve cells.</p><p> </p>


2006 ◽  
Vol 45 (2) ◽  
pp. 216-217 ◽  
Author(s):  
C. Ortega ◽  
R. Faggiuolo ◽  
R. Vormola ◽  
F. Montemurro ◽  
D. Nanni ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
pp. 11
Author(s):  
Ira Widjiastuti ◽  
Widya Saraswati ◽  
Annisa Rahma

Background: Inflammation of the pulp can lead to elicit pain. Pain in inflammation is induced by the cyclooxygenase-2 enzyme (COX-2) which induces prostaglandin E2 (PGE2) resulting in pain. Pain in the pulp can be relieved by eugenol. In its application, eugenol is toxic to pulp fibroblasts. Due to the side effect, it is worth considering other biocompatible materials with minimal side effects, such as propolis. Flavonoids and phenolic acids that contained in propolis can inhibit COX-2. Therefore, an analysis outlined in the literature review is needed to examine the results of research related to the role of propolis as pulp pain relief by inhibiting COX-2 expression. Purpose: To analyze the role of propolis in pulp pain by inhibiting COX-2 expression. Reviews: Propolis extract that extracted by ethanol, water, and hydroalcohol has pain relief properties in the pulp by inhibiting COX-2 by directly binding to the COX-2 receptors and by reducing the production of proinflammatory cytokines which are COX-2 inducers, proven through in vivo, in vitro, and in silico studies in various target cell organs. Conclusion: Propolis extract has high prospect as inflammatory pain inhibitor in the pulp by inhibit COX-2 expression.


2021 ◽  
pp. 135965352110640
Author(s):  
D Andouard ◽  
R Gueye ◽  
S Hantz ◽  
C Fagnère ◽  
B Liagre ◽  
...  

Background Human cytomegalovirus (HCMV) is involved in complications on immunocompromised patients. Current therapeutics are associated with several drawbacks, such as nephrotoxicity. Purpose: As HCMV infection affects inflammation pathways, especially prostaglandin E2 (PGE2) production via cyclooxygenase 2 enzyme (COX-2), we designed 2'-hydroxychalcone compounds to inhibit human cytomegalovirus. Study design We first selected the most efficient new synthetic chalcones for their effect against COX-2-catalyzed PGE2. Study sample Among the selected compounds, we assessed the antiviral efficacy against different HCMV strains, such as the laboratory strain AD169 and clinical strains (naïve or multi-resistant to conventional drugs) and toxicity on human cells. Results The most efficient and less toxic compound (chalcone 7) was tested against HCMV in combination with other antiviral molecules: artesunate (ART), baicalein (BAI), maribavir (MBV), ganciclovir (GCV), and quercetin (QUER) using Compusyn software. Association of chalcone 7 with MBV and BAI is synergistic, antagonistic with QUER, and additive with GCV and ART. Conclusion These results provide a promising search path for potential bitherapies against HCMV.


2018 ◽  
Vol 206 (1-2) ◽  
pp. 46-53 ◽  
Author(s):  
Maryam Sadat Tafakh ◽  
Massoud Saidijam ◽  
Tayebeh Ranjbarnejad ◽  
Sara Malih ◽  
Solmaz Mirzamohammadi ◽  
...  

Background: A high expression of prostaglandin E2 (PGE2) is found in colorectal cancer. Therefore, blocking of PGE2 generation has been identified as a promising approach for anticancer therapy. Sulforaphane (SFN), an isothiocyanate derived from glucosinolate, is used as the antioxidant and anticancer agents. Methods: HT-29 cells were treated with various concentrations of SFN and compared to untreated cells for the expression of microsomal prostaglandin E synthase-1 (mPGES-1), cyclooxygenase 2 (COX-2), hypoxia-inducible factor-1 (HIF-1), C-X-C chemokine receptor type 4 (CXCR4), vascular endothelial growth factor (VEGF), and matrix metalloproteinase (MMP)-2 and MMP-9 at the mRNA level. The PGE2 level was measured by ELISA assay. Apoptosis was evaluated by the proportion of sub-G1 cells. The activity of caspase-3 was determined using an enzymatic assay. HT-29 cell migration was assessed using a scratch test. Results: SFN preconditioning decreased the expression of COX-2, mPGES-1, HIF-1, VEGF, CXCR4, MMP-2, and MMP-9. An apoptotic effect of SFN was preceded by the activation of caspase-3 as well as accumulation of cells in the sub-G1 phase of the cell cycle. SFN decreased PGE2 generation and inhibited the in vitro motility/wound-healing activity of HT-29 cells. Conclusions: SFN anticancer effects are associated with antiproliferative, antiangiogenic, and antimetastatic activities arising from the downregulation of the COX-2/ mPGES-1 axis.


Sign in / Sign up

Export Citation Format

Share Document