Sulforaphane, a Chemopreventive Compound, Inhibits Cyclooxygenase-2 and Microsomal Prostaglandin E Synthase-1 Expression in Human HT-29 Colon Cancer Cells

2018 ◽  
Vol 206 (1-2) ◽  
pp. 46-53 ◽  
Author(s):  
Maryam Sadat Tafakh ◽  
Massoud Saidijam ◽  
Tayebeh Ranjbarnejad ◽  
Sara Malih ◽  
Solmaz Mirzamohammadi ◽  
...  

Background: A high expression of prostaglandin E2 (PGE2) is found in colorectal cancer. Therefore, blocking of PGE2 generation has been identified as a promising approach for anticancer therapy. Sulforaphane (SFN), an isothiocyanate derived from glucosinolate, is used as the antioxidant and anticancer agents. Methods: HT-29 cells were treated with various concentrations of SFN and compared to untreated cells for the expression of microsomal prostaglandin E synthase-1 (mPGES-1), cyclooxygenase 2 (COX-2), hypoxia-inducible factor-1 (HIF-1), C-X-C chemokine receptor type 4 (CXCR4), vascular endothelial growth factor (VEGF), and matrix metalloproteinase (MMP)-2 and MMP-9 at the mRNA level. The PGE2 level was measured by ELISA assay. Apoptosis was evaluated by the proportion of sub-G1 cells. The activity of caspase-3 was determined using an enzymatic assay. HT-29 cell migration was assessed using a scratch test. Results: SFN preconditioning decreased the expression of COX-2, mPGES-1, HIF-1, VEGF, CXCR4, MMP-2, and MMP-9. An apoptotic effect of SFN was preceded by the activation of caspase-3 as well as accumulation of cells in the sub-G1 phase of the cell cycle. SFN decreased PGE2 generation and inhibited the in vitro motility/wound-healing activity of HT-29 cells. Conclusions: SFN anticancer effects are associated with antiproliferative, antiangiogenic, and antimetastatic activities arising from the downregulation of the COX-2/ mPGES-1 axis.

2020 ◽  
Vol 79 (Suppl 1) ◽  
pp. 1103.2-1103
Author(s):  
C. Edenius ◽  
G. Ekström ◽  
J. Kolmert ◽  
R. Morgenstern ◽  
P. Stenberg ◽  
...  

Background:Microsomal prostaglandin E synthase-1 (mPGES-1) catalyzes the formation prostaglandin (PG) E2from cyclooxygenase derived PGH2(1, 2). Inhibition of mPGES-1 leads to reduction of pro-inflammatory PGE2, while in vessels there is a concomitant increase of vasoprotective prostacyclin (PGI2) via shunting of PGH2(3,4). Apart from relieving symptoms in experimental animal models of inflammation, inhibitors of mPGES-1 cause relaxation of human medium sized arteries(4)and resistance arteries(5). The prostaglandin profile following mPGES-1 inhibition, explains the anti-inflammatory effects and also opens for the possibility of treating inflammatory diseases with concomitant vasculopathies. GS-248 is a potent and selective inhibitor of mPGES-1 exhibiting sub-nanomolar IC50in human whole bloodex vivo.Objectives:To evaluate safety, tolerability, pharmacokinetics and pharmacodynamics of GS-248.Methods:Healthy males and females (age 18–73 years) were included in the study. Six cohorts were administrated single oral doses of 1-300mg GS-248 (n=36) or placebo (n=12), three cohorts were administered once daily doses of 20-180mg GS-248 (n=18) or placebo (n=12) over ten days. In addition, 8 subjects were treated in a separate cohort with 200mg celecoxib bid for ten days. Blood samples were drawn for measurement of GS-248 exposure and production of PGE2after LPS incubationex vivo. The content of PGE2and PGI2metabolites was measured in urine. All analyses were performed by LC-MS/MS.Results:GS-248 was safe and well tolerated at all tested dose levels. Maximum plasma concentration was achieved 1 - 2.5 hours after dosing, and half-life was about 10 hours. Induced PGE2formationex vivo,catalyzed by mPGES-1, was completely inhibited for 24 hours after a single low dose (40mg) of GS-248. In urine, GS-248 dose-dependently reduced the excretion of PGE2metabolite by more than 50% whereas the excretion of PGI2metabolite increased more than twice the baseline levels. In the celecoxib cohort urinary metabolites of both PGE2and PGI2were reduced with approx 50%.Conclusion:GS-248 at investigated oral doses was safe and well tolerated. There was a sustained inhibition of LPS induced PGE2formation in whole blood. In urine, there was a metabolite shift showing reduced PGE2and increased PGI2, while celecoxib reduced both PGE2and PGI2metabolites. This suggests that selective inhibition of mPGES-1 results in systemic shunting of PGH2to PGI2formation, leading to anti-inflammatory and vasodilatory effects, while preventing platelet activation. The results warrant further evaluation of GS-248 in inflammatory conditions with vasculopathies such as Digital Ulcers and Raynaud’s Phenomenon in Systemic Sclerosis.References:[1]Korotkova M, Jakobsson PJ. Persisting eicosanoid pathways in rheumatic diseases. Nat Rev Rheumatol. 2014;10:229-41[2]Bergqvist F, Morgenstern R, Jakobsson PJ. A review on mPGES-1 inhibitors: From preclinical studies to clinical applications. Prostaglandins Other Lipid Mediat. 2019;147:106383[3]Kirkby NS, et al. Mechanistic definition of the cardiovascular mPGES-1/COX-2/ADMA axis. Cardiovasc Res. 2020[4]Ozen G, et al. Inhibition of microsomal PGE synthase-1 reduces human vascular tone by increasing PGI2: a safer alternative to COX-2 inhibition. Br J Pharmacol. 2017;174:4087-98[5]Larsson K, et al. Biological characterization of new inhibitors of microsomal PGE synthase-1 in preclinical models of inflammation and vascular tone. Br J Pharmacol. 2019;176:4625-38Disclosure of Interests:Charlotte Edenius Shareholder of: Gesynta Pharma, Consultant of: Gesynta Pharma,, Gunilla Ekström Shareholder of: Gesynta Pharma, Consultant of: Gesynta Pharma,, Johan Kolmert Consultant of: Gesynta Pharma,, Ralf Morgenstern Shareholder of: Gesynta Pharma, Employee of: Gesynta Pharma, Patric Stenberg Shareholder of: Gesynta Pharma, Employee of: Gesynta Pharma, Per-Johan Jakobsson Shareholder of: Gesynta Pharma, Grant/research support from: Gesynta Pharma, AstraZeneca,, Göran Tornling Shareholder of: Gesynta Pharma, Vicore Pharma,, Consultant of: Gesynta Pharma, Vicore Pharma, AnaMar


2016 ◽  
Vol 36 (7) ◽  
pp. 692-700 ◽  
Author(s):  
T Ranjbarnejad ◽  
M Saidijam ◽  
M sadat tafakh ◽  
M Pourjafar ◽  
F Talebzadeh ◽  
...  

Background: Colorectal cancer is the fourth leading cause of death. Various natural compounds are known to have antitumor properties. Garcinol, a polyisoprenylated benzophenone, has antioxidant and anti-inflammatory properties. In the current study, we investigated the anticancer activity of garcinol on human colorectal adenocarcinoma cell line (HT-29) human colon cancer cells. Methods: HT-29 cells were treated with various concentrations of garcinol for 24 h. The effect of garcinol on HT-29 cells proliferation was assessed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay; the mRNA expression of microsomal prostaglandin E synthase-1 (mPGES-1), hypoxia-inducible factor-1α (HIF-1α), vascular endothelial growth factor (VEGF), C-X-C chemokine receptor type 4 (CXCR4), matrix metalloproteinase-2 (MMP-2), and matrix metalloproteinase-9 (MMP-9) were examined by quantitative real-time polymerase chain reaction; apoptosis was detected by proportion of sub-G1 cell; caspase 3 activity and prostaglandin E2 (PGE2) level were determined by enzyme-linked immunosorbent assay and HT-29 cells migration was assessed using scratch test. Results: Garcinol preconditioning markedly decreased the expression of mPGES-1, HIF-1α, VEGF, CXCR4, MMP-2, and MMP-9. The proportion of cells in sub-G1 phase and caspase 3 activity were increased by garcinol treatment whereas the cell proliferation, PGE2 level, and cell migration were decreased in these cells, compared to the control group. Conclusion: Our findings suggest that garcinol plays a critical role in elevating apoptosis and inhibiting HT-29 cells proliferation, angiogenesis, and invasion by suppressing the mPGES-1/PGE2/HIF-1α signaling pathways.


2016 ◽  
Vol 101 (6) ◽  
pp. 2371-2379 ◽  
Author(s):  
Mariko Miyashita ◽  
Kaori Koga ◽  
Gentaro Izumi ◽  
Fusako Sue ◽  
Tomoko Makabe ◽  
...  

Abstract Context: Endometriosis is an estrogen-dependent, chronic inflammatory disease. Recent studies have shown that vitamin D (VD) is an effective modulator of the immune system and plays an important role in controlling many inflammatory diseases. Objective: The objective of the study was to clarify the in vitro effects of 1,25-dihydroxy vitamin D3 (1,25[OH]2D3) on human endometriotic stromal cells (ESCs) and to determine the serum levels of VD in endometriosis patients. Design, Patients, and Main Outcome Measures: ESCs were isolated from ovarian endometrioma and cultured with 1,25(OH)2D3. Gene expression of IL-8, cyclooxygenase-2, microsomal prostaglandin E synthase-1, microsomal prostaglandin E synthase-2, cytosolic prostaglandin E synthase, 15-hydroxyprostaglandin dehydrogenase, matrix metalloproteinase (MMP)-2, and MMP-9 was examined using quantitative RT-PCR. The production of IL-8 and prostaglandin E2 was measured using an ELISA and an enzyme immunoassay. Viable cell number was assessed using a cell-counting assay, and DNA synthesis was assessed using the bromodeoxyuridine incorporation assay. Apoptosis was assessed using flow cytometry. The expression of inhibitory-κBα protein was detected using Western blotting. The serum levels of 25-hydroxyvitamin D3 and 1,25(OH)2D3 were measured by a RIA. Results: In vitro studies showed that 1,25(OH)2D3 significantly reduced IL-1β- or TNF-α-induced inflammatory responses, such as IL-8 expression and prostaglandin activity. 1,25(OH)2D3 also reduced viable ESC numbers and DNA synthesis but did not affect apoptosis. MMP-2 and MMP-9 expressions were reduced by 1,25(OH)2D3. 1,25(OH)2D3 inhibited nuclear factor-κB activation. The serum 25-hydroxyvitamin D3 levels were significantly lower in women with severe endometriosis than in the controls and women with mild endometriosis. Serum 1,25(OH)2D3 levels were not different between groups. Conclusions: VD modulates inflammation and proliferation in endometriotic cells, and a lower VD status is associated with endometriosis. Taken together, VD supplementation could be a novel therapeutic strategy for managing endometriosis.


2005 ◽  
Vol 53 (11) ◽  
pp. 1391-1401 ◽  
Author(s):  
William E. Ackerman IV ◽  
John M. Robinson ◽  
Douglas A. Kniss

Cytokine-induced prostaglandin (PG)E2 synthesis requires increased expression of cyclooxygenase-2 (COX-2) in human WISH epithelial cells. Recently, an inducible downstream PGE synthase (microsomal PGE synthase-1, mPGES-1) has been implicated in this inflammatory pathway. We evaluated cooperation between COX-2 and mPGES-1 as a potential mechanism for induced PGE2 production in WISH cells. Cytokine stimulation led to increased expression of both enzymes. Selective pharmacological inhibition of these enzymes demonstrated that induced PGE2 release occurred through a dominant COX-2/mPGES-1 pathway. Unexpectedly, immunofluorescent microscopy revealed that the expression of these enzymes was not tightly coordinated among cells after cytokine challenge. Within cells expressing high levels of both mPGES-1 and COX-2, immunolabeling of high-resolution semithin cryosections revealed that COX-2 and mPGES-1 were largely segregated to distinct regions within continuous intracellular membranes. Using biochemical means, it was further revealed that the majority of mPGES-1 resided within detergent-insoluble membrane fractions, whereas COX-2 was found only in detergent-soluble fractions. We conclude that although mPGES-1 and COX-2 show transcriptional and functional coordination in cytokine-induced PGE2 synthesis, complementary morphological and biochemical data suggest that a majority of intracellular mPGES-1 and COX-2 are segregated to discrete lipid microdomains in WISH epithelial cells.


2007 ◽  
Vol 56 (11) ◽  
pp. 3564-3574 ◽  
Author(s):  
Astrid Jüngel ◽  
Oliver Distler ◽  
Ursula Schulze-Horsel ◽  
Lars C. Huber ◽  
Huy Riem Ha ◽  
...  

2004 ◽  
Vol 10 (3) ◽  
pp. 1024-1031 ◽  
Author(s):  
Dragan Golijanin ◽  
Jian-You Tan ◽  
Agnieszka Kazior ◽  
Erik G. Cohen ◽  
Paul Russo ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document