An alternative splice variant of the mouse TRH receptor mRNA is the major form expressed in the mouse pituitary gland

1996 ◽  
Vol 16 (2) ◽  
pp. 197-204 ◽  
Author(s):  
K E Jones ◽  
J H Brubaker ◽  
W W Chin

ABSTRACT The sequences of the mouse and rat TRH receptors (TRH-Rs) show 94% similarity at the protein level. However, they differ significantly at their carboxy terminals, i.e. the mouse TRH-R ends with an asparagine at position 393 while, in the rat, residue 393 is lysine and an additional 19 amino acids are added before the first stop codon. In the mouse cDNA, the sequence encoding these additional amino acids is located 224 bp downstream in the 3′ untranslated region (3′UT). As the mouse TRH-R was cloned from thyrotrope-derived TtT97 tissue and the rat TRH-R from lactotrope-derived GH cell lines, we have investigated whether this difference at the carboxyterminus represents a species-specific or cell type-specific pattern of TRH-R expression. Total RNA was isolated from mouse pituitary and TtT97 tissue, and rat pituitary and GH3 cells. Reverse transcription PCR analysis was performed using primers that would generate DNA fragments including the stop codon in either the mouse or the rat TRH-R and, in the mouse form, the extra 224 bp of 3′UT. This would generate a product of 234 bp from the rat sequence and 441 bp from the mouse sequence. In rat pituitary and GH3 cDNA, PCR generated the expected 234 bp product but not a band representing the mouse sequence. In both mouse pituitary and TtT97 cDNA, neither the expected 441 bp nor the 234 bp fragments were amplified; instead a larger, 829 bp, product was generated. Sequence analysis revealed a 388 bp insertion at position 1663 in the 3′UT compared with the published mouse TRH-R sequence. Ribonuclease protection analysis using this 829 bp fragment as a probe showed that this sequence represented the major TRH-R mRNA species in mouse pituitary and TtT97 RNA. A genomic clone containing this region of the mouse TRH-R gene was isolated and analysis of the sequence in this region revealed that this longer form of the mouse TRH-R could be generated by alternative splicing. In summary, we have shown that the carboxyterminal differences between the mouse and rat TRH-Rs are species-specific rather than cell typespecific, and that the major TRH-R mRNA expressed in mouse pituitary contains an additional 388 bp of 3′UT compared with the published sequence. As a region in the 3′UT of the published mTRH-R sequence has been shown to be important for stability of this mRNA, this additional 3′UT sequence could have major effects on the regulation and stability of the mouse TRH-R mRNA.

2018 ◽  
Vol 78 (4) ◽  
pp. 742-749
Author(s):  
E. Robledo-Leal ◽  
L. G. Rivera-Morales ◽  
M. P. Sangorrín ◽  
G. M. González ◽  
G. Ramos-Alfano ◽  
...  

Abstract Although invasive infections and mortality caused by Candida species are increasing among compromised patients, resistance to common antifungal agents is also an increasing problem. We analyzed 60 yeasts isolated from patients with invasive candidiasis using a PCR/RFLP strategy based on the internal transcribed spacer (ITS2) region to identify different Candida pathogenic species. PCR analysis was performed from genomic DNA with a primer pair of the ITS2-5.8S rDNA region. PCR-positive samples were characterized by RFLP. Restriction resulted in 23 isolates identified as C. albicans using AlwI, 24 isolates as C. parapsilosis using RsaI, and 13 as C. tropicalis using XmaI. Then, a group of all isolates were evaluated for their susceptibility to a panel of previously described killer yeasts, resulting in 75% being susceptible to at least one killer yeast while the remaining were not inhibited by any strain. C. albicans was the most susceptible group while C. tropicalis had the fewest inhibitions. No species-specific pattern of inhibition was obtained with this panel of killer yeasts. Metschnikowia pulcherrima, Pichia kluyveri and Wickerhamomyces anomalus were the strains that inhibited the most isolates of Candida spp.


1997 ◽  
Vol 325 (1) ◽  
pp. 269-276 ◽  
Author(s):  
Jan EGGERMONT ◽  
Gunnar BUYSE ◽  
Thomas VOETS ◽  
Jan TYTGAT ◽  
Humbert DE SMEDT ◽  
...  

ClC-6 is a protein that structurally belongs to the family of ClC-type chloride channels. We now report the identification of three additional ClC-6 isoforms that are truncated because of alternative splicing. We have isolated, from human K562 cells, four types of ClC-6 cDNAs that encode four distinct ClC-6 protein isoforms. ClC-6a (869 amino acids) corresponds to the previously published ClC-6 protein [Brandt and Jentsch (1995) FEBS Lett. 377, 15–20] and it has a canonical ClC structure. However, ClC-6b (320 amino acids), ClC-6c (353 amino acids) and ClC-6d (308 amino acids) are truncated at their C-termini. Hydropathy-plot analysis indicates that the shortened isoforms contain maximally four (ClC-6b and -6d) or seven (ClC-6c) transmembrane domains. Sequence analysis of a human genomic ClC-6 fragment indicates that the cDNA variability arises from alternative splicing at two different positions: the first alternative site consists of an intron flanked by two alternative donor sites and two alternative acceptor sites, the second being due to an exon that is optionally included or excluded. Reverse-transcription-PCR analysis of ClC-6 expression in human cell lines and tissues shows that the majority (83%) of ClC-6 mRNAs consists of ClC-6a or ClC-6c messengers. Furthermore, in a mouse tissue panel, the ClC-6a mRNA has a relatively broad tissue expression pattern, since it could be detected in brain, kidney, testis, skeletal muscle, thymus and pancreas. In contrast, expression of ClC-6c is more restricted, since it was only detected in kidney.


Open Medicine ◽  
2020 ◽  
Vol 15 (1) ◽  
pp. 1202-1212
Author(s):  
Aichun Zhang ◽  
Yangzi Jin

AbstractAllergic rhinitis (AR) is one of the most common chronic diseases. This study examined whether microRNA (miR)-182-5p plays a role in AR by regulating toll-like receptor 4 (TLR4). First, data demonstrated that TLR4 was a target of miR-182-5p. Subsequently, AR mouse model was established to explore the role of miR-182-5p and TLR4 in AR in vivo. Initially, quantitative reverse transcription-PCR (qRT-PCR) analysis indicated that miR-182-5p was downregulated, while TLR4 expression was upregulated in AR mice. Then we found that miR-182-5p mimic reduced the frequency of sneezing and nose rubbing of the AR mice. In addition, miR-182-5p mimic significantly increased ovalbumin (OVA)-specific IgE and leukotriene C4 expression levels in nasal lavage fluid (NLF) and serum of AR mice. miR-182-5p mimic decreased the number of inflammatory cells in NLF of AR mice. It also reduced the levels of inflammatory factors in the serum of AR mice, such as interleukin (IL)-4, IL-5, IL-13, IL-17 and tumor necrosis factor (TNF)-α, while increasing the release of IFN-γ and IL-2. Finally, miR-182-5p mimic inhibited NF-κB signaling pathway activation in AR mice. However, all effects of miR-182-5p mimic on AR mice were reversed by TLR4-plasmid. In conclusion, miR-182-5p/TLR4 axis may represent a novel therapeutic target for AR.


2003 ◽  
Vol 69 (11) ◽  
pp. 6541-6549 ◽  
Author(s):  
Gilbert Thierry Lamothe ◽  
Thierry Putallaz ◽  
Han Joosten ◽  
Joey D. Marugg

ABSTRACT A seminested reverse transcription-PCR method coupled to membrane filtration was optimized to investigate the presence of norovirus (NV) RNA sequences in bottled and natural mineral waters. The recovery of viral particles by filtration varied between 28 and 45%, while the limit of detection of the overall method ranged from 6 to 95 viral particles. The assay was broadly reactive, as shown by the successful detection of 27 different viral strains representing 12 common genotypes of NVs. A total of 718 bottled and natural mineral water samples were investigated, including 640 samples of finished, spring, and line products (mostly 1 to 1.5 liters), collected from 36 different water brands of various types and from diverse geographic origins over a 2-year period. In addition, 78 samples of larger volume (10 and 400 to 500 liters) and environmental swabs were investigated. From the 1,436 analyses that were performed for the detection of NVs belonging to genogroups I and II, 34 samples (2.44%) were presumptively positive by seminested RT-PCR. However, confirmation by DNA sequence analysis revealed that all presumptive positive results were either due to nonspecific amplification or to cross-contamination. In conclusion, these results do not provide any evidence for the presence of NV genome sequences in bottled waters.


2021 ◽  
Vol 32 (4) ◽  
pp. 637-644
Author(s):  
Jamal Nasser Saleh Al-maamari ◽  
Mahardian Rahmadi ◽  
Sisca Melani Panggono ◽  
Devita Ardina Prameswari ◽  
Eka Dewi Pratiwi ◽  
...  

Abstract Objectives The study aimed to determine the effect of quercetin on the expression of primary regulator gene involved in lipogenesis and triglycerides synthesis in the liver, and the sterol regulatory binding protein-1c (SREBP-1c) mRNA in non-alcoholic fatty liver disease (NAFLD) with a high-fat diet (HFD) model. Methods Fifty-six Balb/c mice were divided into seven groups: standard feed; HFD; HFD and quercetin 50 mg/kg for 28 days; HFD and quercetin 100 mg/kg BW for 28 days; HFD and quercetin 50 mg/kg for 14 days; HFD and quercetin 100 mg/kg for 14 days; HFD and repaired fed for 14 days. Quercetin was administered intraperitoneally. The animals were sacrificed 24 h after the last treatment; the liver was taken for macroscopic, histopathological staining using hematoxylin–eosin and reverse transcription-PCR analysis sample. Results HFD significantly increased the expression of SREBP-1c mRNA; meanwhile, quercetin and repaired feed significantly reduced the expression of SREBP-1c mRNA in the liver. Quercetin at a dose of 50 mg/kg and 100 mg/kg also improved liver cells’ pathological profile in high-fat diet NAFLD. Conclusions The present study suggests that quercetin has an inhibitory effect on SREBP-1c expression and improved liver pathology in NAFLD mice.


2000 ◽  
Vol 74 (21) ◽  
pp. 10176-10186 ◽  
Author(s):  
T. Yamaguchi ◽  
S. L. Kaplan ◽  
P. Wakenell ◽  
K. A. Schat

ABSTRACT The QT35 cell line was established from a methylcholanthrene-induced tumor in Japanese quail (Coturnix coturnix japonica) (C. Moscovici, M. G. Moscovici, H. Jimenez, M. M. Lai, M. J. Hayman, and P. K. Vogt, Cell 11:95–103, 1977). Two independently maintained sublines of QT35 were found to be positive for Marek's disease virus (MDV)-like genes by Southern blotting and PCR assays. Sequence analysis of fragments of the ICP4, ICP22, ICP27, VP16, meq, pp14, pp38, open reading frame (ORF) L1, and glycoprotein B (gB) genes showed a strong homology with the corresponding fragments of MDV genes. Subsequently, a serotype 1 MDV-like herpesvirus, tentatively name QMDV, was rescued from QT35 cells in chicken kidney cell (CKC) cultures established from 6- to 9-day-old chicks inoculated at 8 days of embryonation with QT35 cells. Transmission electron microscopy failed to show herpesvirus particles in QT35 cells, but typical intranuclear herpesvirus particles were detected in CKCs. Reverse transcription-PCR analysis showed that the following QMDV transcripts were present in QT35 cells: sense and antisense meq, ORF L1, ICP4, and latency-associated transcripts, which are antisense to ICP4. A transcript of approximately 4.5 kb was detected by Northern blotting using total RNA from QT35 cells. Inoculation of QT35 cells with herpesvirus of turkeys (HVT)-infected chicken embryo fibroblasts (CEF) but not with uninfected CEF resulted in the activation of ICP22, ICP27, VP16, pp38, and gB. In addition, the level of ICP4 mRNA was increased compared to that in QT35 cells. The activation by HVT resulted in the production of pp38 protein. It was not possible to detect if the other activated genes were translated due to the lack of serotype 1-specific monoclonal antibodies.


2016 ◽  
Vol 95 (1) ◽  
pp. 21-33 ◽  
Author(s):  
A. VIEIRA-DA-SILVA ◽  
F. ADEGA ◽  
H. GUEDES-PINTO ◽  
R. CHAVES

2021 ◽  
Author(s):  
Can Chen ◽  
Yi Zong ◽  
Jiaojiao Tang ◽  
Ruisheng Ke ◽  
Lizhi Lv ◽  
...  

Background: The aim of this study was to investigate the role of miR-369-3p in hepatocellular carcinoma (HCC). Materials & methods: The expression levels of miR-369-3p were detected using the quantitative real-time reverse transcription-PCR analysis. The cell counting kit-8 and transwell assays were used to explore the effects of miR-369-3p on cell proliferation, migration and invasion of HCC cells. Results: The miR-369-3p expression was downregulated in HCC tissues and cell lines, in comparison to the normal controls, respectively. In vitro, overexpression of miR-369-3p in Hep 3B and Huh7 cells inhibited cell proliferation, migration and invasion. SOX4 was a direct target of miR-369-3p. Conclusion: Our results suggested that miR-369-3p may be a tumor suppressor in HCC by targeting SOX4.


2012 ◽  
Vol 25 (5) ◽  
pp. 697-708 ◽  
Author(s):  
Adriana Cabral ◽  
Stan Oome ◽  
Nick Sander ◽  
Isabell Küfner ◽  
Thorsten Nürnberger ◽  
...  

The genome of the downy mildew pathogen Hyaloperonospora arabidopsidis encodes necrosis and ethylene-inducing peptide 1 (Nep1)-like proteins (NLP). Although NLP are widely distributed in eukaryotic and prokaryotic plant pathogens, it was surprising to find these proteins in the obligate biotrophic oomycete H. arabidopsidis. Therefore, we analyzed the H. arabidopsidis NLP (HaNLP) family and identified 12 HaNLP genes and 15 pseudogenes. Most of the 27 genes form an H. arabidopsidis–specific cluster when compared with other oomycete NLP genes, suggesting this class of effectors has recently expanded in H. arabidopsidis. HaNLP transcripts were mainly detected during early infection stages. Agrobacterium tumefaciens–mediated transient expression and infiltration of recombinant NLP into tobacco and Arabidopsis leaves revealed that all HaNLP tested are noncytotoxic proteins. Even HaNLP3, which is most similar to necrosis-inducing NLP proteins of other oomycetes and which contains all amino acids that are critical for necrosis-inducing activity, did not induce necrosis. Chimeras constructed between HaNLP3 and the necrosis-inducing PsojNIP protein demonstrated that most of the HaNLP3 protein is functionally equivalent to PsojNIP, except for an exposed domain that prevents necrosis induction. The early expression and species-specific expansion of the HaNLP genes is suggestive of an alternative function of noncytolytic NLP proteins during biotrophic infection of plants.


2022 ◽  
Vol 23 (2) ◽  
pp. 618
Author(s):  
Kirill V. Khabudaev ◽  
Darya P. Petrova ◽  
Yekaterina D. Bedoshvili ◽  
Yelena V. Likhoshway ◽  
Mikhail A. Grachev

Microtubules are formed by α- and β-tubulin heterodimers nucleated with γ-tubulin. Tubulins are conserved eukaryotic proteins. Previously, it was shown that microtubules are involved in diatom silica frustule morphogenesis. Diatom frustules are varied, and their morphology is species-specific. Despite the attractiveness of the problem of elucidating the molecular mechanisms of genetically programmed morphogenesis, the structure and evolution of diatom tubulins have not been studied previously. Based on available genomic and transcriptome data, we analyzed the phylogeny of the predicted amino acid sequences of diatom α-, β- and γ-tubulins and identified five groups for α-tubulins, six for β-tubulins and four for γ-tubulins. We identified characteristic amino acids of each of these groups and also analyzed possible posttranslational modification sites of diatom tubulins. According to our results, we assumed what changes occurred in the diatom tubulin structures during their evolution. We also identified which tubulin groups are inherent in large diatom taxa. The similarity between the evolution of diatom tubulins and the evolution of diatoms suggests that molecular changes in α-, β- and γ-tubulins could be one of the factors in the formation of a high morphological diversity of diatoms.


Sign in / Sign up

Export Citation Format

Share Document