scholarly journals Isolation and characterization of an alternatively spliced variant of transcription factor Islet-1

2003 ◽  
Vol 31 (3) ◽  
pp. 419-425 ◽  
Author(s):  
K Ando ◽  
S Shioda ◽  
H Handa ◽  
K Kataoka

The LIM homeodomain protein Islet-1 (Isl1), one of the earliest markers for motor neuron differentiation, is also expressed in all classes of islet cells in the pancreas. Isl1 is known to bind and regulate the promoters of the insulin, glucagon and somatostatin genes. In this study, we describe isolation of a novel isl1 cDNA species from the mouse islet beta cell line betaTC6, which arose from the utilization of an alternative splicing acceptor site in the fifth exon. This shorter cDNA encodes an Isl1 isoform (Isl1-beta) lacking the carboxy-terminal 23 amino acids of the previously reported product Isl1-alpha. Although the level of isl1-beta mRNA is much lower than that of isl1-alpha, isl1-beta is preferentially expressed in murine insulinoma cell lines but not in glucagonoma cell line. Upon transient transfection, both Isl1-alpha and Isl1-beta accumulate in the nuclei of murine insulinoma cells. We found that Isl1-beta is a relatively more potent transcriptional activator of the insulin promoter than Isl1-alpha and that the Isl1-alpha isoform undergoes phosphorylation. Therefore, the transcriptional activity of Isl1 is potentially regulated by the alternative splicing of its mRNA and by phosphorylation.

1995 ◽  
Vol 310 (3) ◽  
pp. 997-1003 ◽  
Author(s):  
P Serup ◽  
H V Petersen ◽  
E E Pedersen ◽  
H Edlund ◽  
J Leonard ◽  
...  

The mouse homeodomain protein insulin promoter factor-1 (IPF-1) and the rat homologue somatostatin transactivating factor-1 (STF-1) are involved in early pancreatic development and have been implicated in the cell-specific regulation of insulin- and somatostatin-gene expression in mature islet beta- and delta-cells. The cell specificity of IPF-1/STF-1 expression in mature islets is, however, still unclear. Using antisera against recombinant IPF-1 and STF-1 in combination with antisera against islet hormones we find that all beta-cells in monolayers of newborn rat islet cells express STF-1, as do a fraction of the delta-cells. In adult rat and mouse pancreas we find a similar distribution. IPF-1/STF-1 expression was not detected in glucagon-producing alpha-cells. In islet cell tumour models we found that a glucagon/islet amyloid polypeptide (IAPP)-producing pluripotent rat islet cell line (NHI-6F-GLU) expresses STF-1 in all cells prior to insulin gene activation induced by in vivo culture. In contrast, a mouse alpha-cell line (alpha TC1) exclusively expressed IPF-1 in a small subset of insulin-producing cells while an insulin-negative subclone (alpha TC1.9) was negative for IPF-1. In transfection experiments using alpha TC1.9 cells STF-1 activated a rat insulin 1 reporter gene dependent not only on both STF-1-binding sites, but also on the E1-binding site for the helix-loop-helix factor IEF-1. However, the endogenous mouse insulin genes remained inactive in these cells. These results suggest that the insulin promoter acquires its very high, yet cell-specific, activity at least partly through the action of IPF-1/STF-1. This action is dependent on helix-loop-helix factors bound to the E1 element.


2003 ◽  
Vol 179 (3) ◽  
pp. 447-454 ◽  
Author(s):  
G Dixon ◽  
J Nolan ◽  
N McClenaghan ◽  
PR Flatt ◽  
P Newsholme

Evidence has been published that L -alanine may, under appropriate conditions, promote insulin secretion in normal rodent islets and various beta cell lines. Previous results utilising the clonal beta-cell line BRIN-BD11, demonstrated that alanine dramatically elevated insulin release by a mechanism requiring oxidative metabolism. We demonstrate in this paper that addition ofL -alanine had an insulinotropic effect in dispersed primary islet cells. Addition of D -glucose increasedL -alanine consumption in both BRIN-BD11 cells and primary islet cells.L -glutamine consumption in the BRIN-BD11 cell line and primary rat islets was also determined. The consumption rate was in line with that previously reported for cells of the immune system and other glutamine-utilising cells or tIssues. However,L -alanine consumption was at least an order of magnitude higher thanL -glutamine consumption. The metabolism ofL -alanine in the beta-cell may result in stimulation of insulin secretion via generation of metabolic stimulus secretion coupling factors such asL -glutamate.


2020 ◽  
Vol 29 ◽  
pp. 096368972097120
Author(s):  
P Czernichow ◽  
K Reynaud ◽  
P Ravassard

Since the 1970s, rodent and human insulin-secreting pancreatic beta-cell lines have been developed and found useful for studying beta-cell biology. Surprisingly, although the dog has been widely used as a translational model for diabetes, no canine insulin-secreting beta cells have ever been produced. Here, a targeted oncogenesis protocol previously described by some of us for generating human beta cells was adapted to produce canine beta cells. Canine fetal pancreata were obtained by cesarean section between 42 and 55 days of gestation, and fragments of fetal glands were transduced with a lentiviral vector expressing SV40LT under the control of the insulin promoter. Two Lox P sites flanking the sequence allowed subsequent transgene excision by Cre recombinase expression. When grafted into SCID mice, these transduced pancreata formed insulinomas. ACT-164 is the cell line described in this report. Insulin mRNA expression and protein content were lower than reported with adult cells, but the ACT-164 cells were functional, and their insulin production in vitro increased under glucose stimulation. Transgene excision upon Cre expression arrested proliferation and enhanced insulin expression and production. When grafted in SCID mice, intact and excised cells reversed chemically induced diabetes. We have thus produced an excisable canine beta-cell line. These cells may play an important role in the study of several aspects of the cell transplantation procedure including the encapsulation process, which is difficult to investigate in rodents. Although much more work is needed to improve the excision procedure and achieve 100% removal of large T antigen expression, we have shown that functional cells can be obtained and might in the future be used for replacement therapy in diabetic dogs.


Diabetes ◽  
1992 ◽  
Vol 41 (5) ◽  
pp. 592-597 ◽  
Author(s):  
N. Inagaki ◽  
K. Yasuda ◽  
G. Inoue ◽  
Y. Okamoto ◽  
H. Yano ◽  
...  

Diabetes ◽  
1996 ◽  
Vol 45 (12) ◽  
pp. 1766-1773 ◽  
Author(s):  
M. Noda ◽  
M. Komatsu ◽  
G. W. Sharp

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Latif Rachdi ◽  
Alicia Maugein ◽  
Severine Pechberty ◽  
Mathieu Armanet ◽  
Juliette Hamroune ◽  
...  

2021 ◽  
Vol 22 (5) ◽  
pp. 2559
Author(s):  
Antonia Diaz-Ganete ◽  
Aranzazu Quiroga-de-Castro ◽  
Rosa M. Mateos ◽  
Francisco Medina ◽  
Carmen Segundo ◽  
...  

Basic research on types 1 and 2 diabetes mellitus require early stage studies using beta cells or cell lines, ideally of human origin and with preserved insulin secretion in response to glucose. The 1.1E7 cells are a hybrid cell line resulting from the electrofusion of dispersed human islets and PANC-1 cells, capable of secreting insulin in response to glucose, but their survival and function under toxic conditions remains untested. This characterization is the purpose of the present study. We treated these cells with a cytokine mix, high glucose, palmitate, and the latter two combined. Under these conditions, we measured cell viability and apoptosis (MTT, Caspase Glo and TUNEL assays, as well as caspase-8 and -9 levels by Western blotting), endoplasmic reticulum stress markers (EIF2AK3, HSPA4, EIF2a, and HSPA5) by real-time PCR, and insulin secretion with a glucose challenge. All of these stimuli (i) induce apoptosis and ER stress markers expression, (ii) reduce mRNA amounts of 2–5 components of genes involved in the insulin secretory pathway, and (iii) abrogate the insulin release capability of 1.1E7 cells in response to glucose. The most pronounced effects were observed with cytokines and with palmitate and high glucose combined. This characterization may well serve as the starting point for those choosing this cell line for future basic research on certain aspects of diabetes.


Sign in / Sign up

Export Citation Format

Share Document