scholarly journals Calcitonin stimulates expression of the rat 25-hydroxyvitamin D3-24-hydroxylase (CYP24) promoter in HEK-293 cells expressing calcitonin receptor: identification of signaling pathways

2004 ◽  
Vol 32 (1) ◽  
pp. 87-98 ◽  
Author(s):  
XH Gao ◽  
PP Dwivedi ◽  
JL Omdahl ◽  
HA Morris ◽  
BK May

Regulation of the gene for renal 25-hydroxyvitamin D-24-hydroxylase (CYP24) is important for controlling the level of circulating 1,25-dihydroxyvitamin D3 (1,25(OH)2D3). We report here for the first time that the peptide hormone calcitonin significantly stimulates expression of a rat CYP24 promoter-luciferase construct in both transiently and stably transfected kidney HEK-293 cells. A GC box at -114/-101 and a CCAAT box at -62/-51 have been identified that underlie both basal expression of the CYP24 promoter and the calcitonin inductive response. Data from overexpression studies suggested that Sp1 and NF-Y are the proteins that function through the GC and CCAAT boxes respectively. ERK1/2 signaling pathways were not involved in the calcitonin-mediated response, since stimulation of the promoter was unaffected by the pharmacological ERK1/2 inhibitor PD98059 and by a dominant negative mutant of ERK1/2 (ERK1K71R). In contrast, calcitonin induction but not basal expression was dependent on protein kinase A and protein kinase C (PKC) activities with the inhibitors H89 and calphostin C lowering induction by 50-60%. The atypical PKC, PKCzeta contributes to calcitonin induction, but not to basal expression of the CYP24 promoter, since overexpression of a dominant negative clone PKCzetaK281 M lowered induction by 50%. Cotransfection of a dominant negative form of Ras resulted in calcitonin-mediated induction being reduced also by about 50%. A Ras-PKCzeta signaling pathway for calcitonin action is proposed, which acts through the GC box. The findings have been extrapolated to the in vivo situation where we suggest that induction of renal CYP24 by calcitonin could be important under hypercalcemic conditions thus contributing to the lowering of circulating 1,25(OH)2D3 levels.

1999 ◽  
Vol 344 (3) ◽  
pp. 929-936 ◽  
Author(s):  
Alexander GRAY ◽  
Jeroen V AN DER KAAY ◽  
C. Peter DOWNES

We have tested the binding specificities of the pleckstrin homology (PH) domains of protein kinase B (PKB) and GRP1 (general receptor for phosphoinositides-1), expressed as green fluorescent protein (GFP) fusion proteins [PH(PKB)GFP and PH(GRP1)GFP respectively] in HEK 293 cells and Swiss 3T3 cells, using confocal microscopy. Stimulation of HEK 293 cells with insulin caused a small, but sustained, increase in PtdIns(3,4,5)P3 levels, detected using a radioligand displacement assay, which was mirrored by the translocation of PH(PKB)GFP and PH(GRP1)GFP from the cytosol to the plasma membrane of live, transfected cells. Similar results were obtained using Swiss 3T3 cells stimulated with platelet-derived growth factor (PDGF) and expressing either PH(PKB)GFP or PH(GRP1)GFP. Biochemical analyses confirmed the accumulation of both PtdIns(3,4,5)P3 and PtdIns(3,4)P2 in response to PDGF, but only the latter was present at increased levels in Swiss 3T3 cells 30 min after an oxidative stress (1 mM H2O2). Concomitantly, only PH(PKB)GFP, and not PH(GRP1)GFP, was localized at plasma membranes after 30 min of treatment with H2O2. The fusion proteins appear accurately to report the spatial and temporal distribution of PtdIns(3,4,5)P3 and PtdIns(3,4)P2 in intact cells. These results establish the lipid selectivity of these PH domains in vivo, and further emphasize the overlapping, but distinct, second messenger roles of PtdIns(3,4,5)P3 and PtdIns(3,4)P2.


2000 ◽  
Vol 351 (3) ◽  
pp. 613-619 ◽  
Author(s):  
Rita SLAABY ◽  
Guangwei DU ◽  
Yelena M. ALTSHULLER ◽  
Michael A. FROHMAN ◽  
Klaus SEEDORF

Phospholipase D (PLD)1 is quiescent in vitro and in vivo until stimulated by classical protein kinase C (PKC) isoforms, ADP-ribosylation factor or Rho family members. By contrast, PLD2 has high basal activity, and the mechanisms involved in agonist-induced activation of PLD2 are poorly understood. Using transiently transfected human embryonic kidney (HEK)-293 cells as a model system, we report in the present study that PLD2 overexpressed in HEK-293 cells exhibits regulatory properties similar to PLD1 when stimulated in response to insulin and phorbol ester. Co-expression of PLD1 or PLD2 with PKCα results in constitutive activation of both PLD isoforms, which cannot be further stimulated by insulin. Co-expression of PLD1 with phospholipase C (PLC)γ has the same effect, while co-expression of PLD2 with PLCγ allows PLD2 activity to be stimulated in an insulin-dependent manner. The PKC-specific inhibitors bisindolylmaleimide and Gö 6976 abolish insulin-induced PLD2 activation in HEK-293 cells co-expressing the insulin receptor, PLCγ and PLD2, confirming that not only PLD1, but PLD2 as well, is regulated in a PKC-dependent manner. Finally, we provide evidence that PKCα is constitutively associated with PLD2. In summary, we demonstrate that insulin treatment results in activation of both PLD1 and PLD2 in appropriate cell types when the appropriate upstream intermediate signalling components, i.e. PKCα and PLCγ, are expressed at sufficient levels.


2004 ◽  
Vol 10 (9-10) ◽  
pp. 1492-1501 ◽  
Author(s):  
Michael P. McConnell ◽  
Sanjay Dhar ◽  
Sanjay Naran ◽  
Thang Nguyen ◽  
Ralph A. Bradshaw ◽  
...  

2007 ◽  
Vol 405 (3) ◽  
pp. 591-596 ◽  
Author(s):  
Jun-ichi Saito ◽  
Shinnosuke Toriumi ◽  
Kenjiro Awano ◽  
Hidenori Ichijo ◽  
Keiichi Sasaki ◽  
...  

ASK1 (apoptosis signal-regulating kinase 1), a MKKK (mitogen-activated protein kinase kinase kinase), is activated in response to cytotoxic stresses, such as H2O2 and TNFα (tumour necrosis factor α). ASK1 induction initiates a signalling cascade leading to apoptosis. After exposure of cells to H2O2, ASK1 is transiently activated by autophosphorylation at Thr845. The protein then associates with PP5 (protein serine/threonine phosphatase 5), which inactivates ASK1 by dephosphorylation of Thr845. Although this feedback regulation mechanism has been elucidated, it remains unclear how ASK1 is maintained in the dephosphorylated state under non-stressed conditions. In the present study, we have examined the possible role of PP2Cϵ (protein phosphatase 2Cϵ), a member of PP2C family, in the regulation of ASK1 signalling. Following expression in HEK-293 cells (human embryonic kidney cells), wild-type PP2Cϵ inhibited ASK1-induced activation of an AP-1 (activator protein 1) reporter gene. Conversely, a dominant-negative PP2Cϵ mutant enhanced AP-1 activity. Exogenous PP2Cϵ associated with exogenous ASK1 in HEK-293 cells under non-stressed conditions, inactivating ASK1 by decreasing Thr845 phosphorylation. The association of endogenous PP2Cϵ and ASK1 was also observed in mouse brain extracts. PP2Cϵ directly dephosphorylated ASK1 at Thr845in vitro. In contrast with PP5, PP2Cϵ transiently dissociated from ASK1 within cells upon H2O2 treatment. These results suggest that PP2Cϵ maintains ASK1 in an inactive state by dephosphorylation in quiescent cells, supporting the possibility that PP2Cϵ and PP5 play different roles in H2O2-induced regulation of ASK1 activity.


2014 ◽  
Vol 307 (10) ◽  
pp. R1216-R1230 ◽  
Author(s):  
Christiane Quiniou ◽  
Maria Domínguez-Punaro ◽  
Frank Cloutier ◽  
Atefeh Erfani ◽  
Jamila Ennaciri ◽  
...  

IL-23 is part of the IL-12 family of cytokines and is composed of the p19 subunit specific to IL-23 and the p40 subunit shared with IL-12. IL-23 specifically contributes to the inflammatory process of multiple chronic inflammatory autoimmune disorders, including psoriasis, multiple sclerosis, inflammatory bowel disease, and rheumatoid arthritis. So far, one antibody targeting the shared p40 subunit of IL-12 and IL-23, Ustekinumab, is approved clinically to treat psoriasis. However, there are no treatments inhibiting specifically the IL-23 proinflammatory response. We have developed small IL-23R-specific antagonists by designing all D-peptides arising from flexible regions of IL-23R. Of these peptides, we selected 2305 (teeeqqly), since in addition to its soluble properties, it inhibited IL-23-induced STAT3 phosphorylation in spleen cells. Peptide 2305 specifically binds to IL-23R/IL-12Rβ1-expressing HEK-293 cells and not to cells devoid of the receptor. Peptide 2305 showed functional selectivity by modulating IL-23-induced gene expression in IL-23R/IL-12Rβ1-expressing cells and in Jurkat cells; 2305 does not inhibit IL-12-induced cytokine expression in IL-12Rβ-IL-12Rβ2-HEK-293 cells. Finally, compared with anti-p40 treatment, 2305 effectively and selectively inhibits IL-23-induced inflammation in three in vivo mouse models: IL-23-induced ear inflammation, anti-CD40-induced systemic inflammatory response, and collagen-induced arthritis. We, hereby, describe the discovery and characterization of a potent IL-23R small-peptide modulator, 2305 (teeeqqly), that is effective in vivo. 2305 may be more convenient, less cumbersome, less costly, and most importantly, more specific than current biologics for the treatment of inflammatory conditions, and conceivably complement the actual therapies for these chronic and debilitating inflammatory diseases.


2005 ◽  
Vol 289 (3) ◽  
pp. C543-C556 ◽  
Author(s):  
Sean G. Brown ◽  
Alison Thomas ◽  
Lodewijk V. Dekker ◽  
Andrew Tinker ◽  
Joanne L. Leaney

G protein-gated inward rectifier (Kir3) channels are inhibited by activation of Gq/11-coupled receptors and this has been postulated to involve the signaling molecules protein kinase C (PKC) and/or phosphatidylinositol 4,5-bisphosphate (PIP2). Their precise roles in mediating the inhibition of this family of channels remain controversial. We examine here their relative roles in causing inhibition of Kir3.1/3.2 channels stably expressed in human embryonic kidney (HEK)-293 cells after muscarinic M3 receptor activation. In perforated patch mode, staurosporine prevented the Gq/11-mediated, M3 receptor, inhibition of channel activity. Recovery from M3-mediated inhibition was wortmannin sensitive. Whole cell currents, where the patch pipette was supplemented with PIP2, were still irreversibly inhibited by M3 receptor stimulation. When adenosine A1 receptors were co-expressed, inclusion of PIP2 rescued the A1-mediated response. Recordings from inside-out patches showed that catalytically active PKC applied directly to the intracellular membrane face inhibited the channels: a reversible effect modulated by okadaic acid. Generation of mutant heteromeric channel Kir3.1S185A/Kir3.2C-S178A, still left the channel susceptible to receptor, pharmacological, and direct kinase-mediated inhibition. Biochemically, labeled phosphate is incorporated into the channel. We suggest that PKC-δ mediates channel inhibition because recombinant PKC-δ inhibited channel activity, M3-mediated inhibition of the channel, was counteracted by overexpression of two types of dominant negative PKC-δ constructs, and, by using confocal microscopy, we have demonstrated translocation of green fluorescent protein-tagged PKC-δ to the plasma membrane on M3 receptor stimulation. Thus Kir3.1/3.2 channels are sensitive to changes in membrane phospholipid levels but this is contingent on the activity of PKC-δ after M3 receptor activation in HEK-293 cells.


2003 ◽  
Vol 140 (2) ◽  
pp. 413-421 ◽  
Author(s):  
Feng Xu ◽  
Eisaku Satoh ◽  
Toshihiko Iijima

2006 ◽  
Vol 399 (1) ◽  
pp. 169-175 ◽  
Author(s):  
Monica Gallego ◽  
Heeseog Kang ◽  
David M. Virshup

The circadian clock is regulated by a transcription/translation negative feedback loop. A key negative regulator of circadian rhythm in mammals is the PER2 (mammalian PERIOD 2) protein. Its daily degradation at the end of the night accompanies de-repression of transcription. CKIϵ (casein kinase I ϵ) has been identified as the kinase that phosphorylates PER2, targeting it for ubiquitin-mediated proteasomal degradation. We now report that PER2 degradation is also negatively regulated by PP1 (protein phosphatase 1)-mediated dephosphorylation. In Xenopus egg extract, PP1 inhibition by Inhibitor-2 accelerated mPER2 degradation. Co-immunoprecipitation experiments showed that PER2 bound to PP1c in transfected HEK-293 cells. PP1 immunoprecipitated from HEK-293 cells, mouse liver and mouse brain, dephosphorylated CKIϵ-phosphorylated PER2, showing that PER2 is a substrate for mammalian endogenous PP1. Moreover, over-expression of the dominant negative form of PP1c, the D95N mutant, accelerated ubiquitin and proteasome-mediated degradation of PER2, and shortened the PER2 half-life in HEK-293 cells. Over-expression of the PP1 inhibitors, protein phosphatase 1 holoenzyme inhibitor-1 and Inhibitor-2, confirmed these results. Thus PP1 regulates PER2 stability and is therefore a candidate to regulate mammalian circadian rhythms.


2006 ◽  
Vol 394 (1) ◽  
pp. 365-373 ◽  
Author(s):  
Iva V. Klevernic ◽  
Margaret J. Stafford ◽  
Nicholas Morrice ◽  
Mark Peggie ◽  
Simon Morton ◽  
...  

ERK8 (extracellular-signal-regulated protein kinase 8) expressed in Escherichia coli or insect cells was catalytically active and phosphorylated at both residues of the Thr-Glu-Tyr motif. Dephosphorylation of the threonine residue by PP2A (protein serine/threonine phosphatase 2A) decreased ERK8 activity by over 95% in vitro, whereas complete dephosphorylation of the tyrosine residue by PTP1B (protein tyrosine phosphatase 1B) decreased activity by only 15–20%. Wild-type ERK8 expressed in HEK-293 cells was over 100-fold less active than the enzyme expressed in bacteria or insect cells, but activity could be increased by exposure to hydrogen peroxide, by incubation with the protein serine/threonine phosphatase inhibitor okadaic acid, or more weakly by osmotic shock. In unstimulated cells, ERK8 was monophosphorylated at Tyr-177, and exposure to hydrogen peroxide induced the appearance of ERK8 that was dually phosphorylated at both Thr-175 and Tyr-177. IGF-1 (insulin-like growth factor 1), EGF (epidermal growth factor), PMA or anisomycin had little effect on activity. In HEK-293 cells, phosphorylation of the Thr-Glu-Tyr motif of ERK8 was prevented by Ro 318220, a potent inhibitor of ERK8 in vitro. The catalytically inactive mutants ERK8[D154A] and ERK8[K42A] were not phosphorylated in HEK-293 cells or E. coli, whether or not the cells had been incubated with protein phosphatase inhibitors or exposed to hydrogen peroxide. Our results suggest that the activity of ERK8 in transfected HEK-293 cells depends on the relative rates of ERK8 autophosphorylation and dephosphorylation by one or more members of the PPP family of protein serine/threonine phosphatases. The major residue in myelin basic protein phosphorylated by ERK8 (Ser-126) was distinct from that phosphorylated by ERK2 (Thr-97), demonstrating that, although ERK8 is a proline-directed protein kinase, its specificity is distinct from ERK1/ERK2.


2020 ◽  
Vol 6 (1) ◽  
Author(s):  
S. Neelima ◽  
P. Dwarakanadha Reddy ◽  
Chandra Sekhar Kothapalli Bannoth

Abstract Background Paracetamol (PCM), being extensively adapted analgesic and anti-inflammatory drug all over the world, beyond therapeutic dosages, the oxidative stress-involved nephrotoxicity has been evidenced. However, herbal plants are the windfall for the humankind providing solution for most of the wellness breakdowns. Annona squamosa (AS) is one of such plants with enormous therapeutic and nutraceutical potencies. The main aspiration of the current investigation is to evaluate the nephroprotective ability of ethanolic extract of Annona squamosa (EEAS) leaves against paracetamol-induced nephrotoxicity using in vitro human embryonic kidney (HEK)-293 cells and in vivo experiments in Wistar rats through biochemical parameters, oxidative parameters, and histopathological findings. Results When HEK-293 cells were incubated with PCM, an increased cell death associated with alterations in the morphology of normal cells was observed. At variable concentrations, HEK-293 cells co-treated with PCM and EEAS extracts gave a significant improvement in cell growth on comparing with PCM treatment showing cytoprotective feature of EEAS with an IC50 28.75 μg/mL. In vivo nephroprotective property was assessed from the amount of blood urea nitrogen (BUN) along with creatinine and uric acid which were reduced (P < 0.001) within serum and compact levels of glutathione, catalase, and superoxide dismutase which were termed as GSH, CAT, and SOD, respectively, were increased (P < 0.001) in kidney tissue homogenate in the treated groups than the PCM alone group. Results were additionally supported by histopathological observations. Conclusion The results exhibited that EEAS has impending benefits against PCM-induced nephrotoxicity through in vitro and in vivo experiments.


Sign in / Sign up

Export Citation Format

Share Document