scholarly journals Linking the ubiquitin–proteasome pathway to chromatin remodeling/modification by nuclear receptors

2005 ◽  
Vol 34 (2) ◽  
pp. 281-297 ◽  
Author(s):  
H K Kinyamu ◽  
J Chen ◽  
T K Archer

Over 25 years ago, eukaryotic cells were shown to contain a highly specific system for the selective degradation of short-lived proteins, this system is known as the ubiquitin–proteasome pathway. In this pathway, proteins are targeted for degradation by covalent modification by a small highly conserved protein named ubiquitin. Ubiquitin-mediated degradation of regulatory proteins plays an important role in numerous cell processes, including cell cycle progression, signal transduction and transcriptional regulation. Recent experiments have shown that the ubiquitin–proteasome pathway is also involved in nuclear hormone receptor (NR)-mediated transcriptional regulation. The idea that the ubiquitin–proteasome pathway is involved in NR-mediated transcription is strengthened by experiments showing that ubiquitin–proteasome components are recruited to NR target gene promoters. However, it is not clear how these components modulate NR-mediated chromatin remodeling and gene expression. In this review, we postulate the role of the ubiquitin–proteasome pathway on NR-mediated chromatin remodeling and gene regulation based on the current knowledge from studies implicating the pathway in chromatin structure modifications that are applicable to NR function. Since evidence from this laboratory, using the glucocorticoid receptor responsive mouse mammary tumor virus (MMTV) promoter organized as chromatin, suggest that the ubiquitin–proteasome system may be involved in the elongation phase of transcription, we particularly concentrate on chromatin modifications associated with the elongation phase.

2021 ◽  
Vol 478 (18) ◽  
pp. 3395-3421
Author(s):  
Charles B. Trelford ◽  
Gianni M. Di Guglielmo

The ubiquitin-proteasome pathway (UPP) and autophagy play integral roles in cellular homeostasis. As part of their normal life cycle, most proteins undergo ubiquitination for some form of redistribution, localization and/or functional modulation. However, ubiquitination is also important to the UPP and several autophagic processes. The UPP is initiated after specific lysine residues of short-lived, damaged or misfolded proteins are conjugated to ubiquitin, which targets these proteins to proteasomes. Autophagy is the endosomal/lysosomal-dependent degradation of organelles, invading microbes, zymogen granules and macromolecules such as protein, carbohydrates and lipids. Autophagy can be broadly separated into three distinct subtypes termed microautophagy, chaperone-mediated autophagy and macroautophagy. Although autophagy was once thought of as non-selective bulk degradation, advancements in the field have led to the discovery of several selective forms of autophagy. Here, we focus on the mechanisms of primary and selective mammalian autophagy pathways and highlight the current knowledge gaps in these molecular pathways.


2008 ◽  
Vol 22 (S2) ◽  
pp. 194-194 ◽  
Author(s):  
Jennifer Dedes ◽  
Jun Li ◽  
Fawzia Bardag‐Gorce

2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Chunli Chen ◽  
Haiyun Qin ◽  
Jieqiong Tan ◽  
Zhiping Hu ◽  
Liuwang Zeng

The ubiquitin-proteasome pathway and autophagy-lysosome pathway are two major routes for clearance of aberrant cellular components to maintain protein homeostasis and normal cellular functions. Accumulating evidence shows that these two pathways are impaired during cerebral ischemia, which contributes to ischemic-induced neuronal necrosis and apoptosis. This review aims to critically discuss current knowledge and controversies on these two pathways in response to cerebral ischemic stress. We also discuss molecular mechanisms underlying the impairments of these protein degradation pathways and how such impairments lead to neuronal damage after cerebral ischemia. Further, we review the recent advance on the understanding of the involvement of these two pathways in the pathological process during many therapeutic approaches against cerebral ischemia. Despite recent advances, the exact role and molecular mechanisms of these two pathways following cerebral ischemia are complex and not completely understood, of which better understanding will provide avenues to develop novel therapeutic strategies for ischemic stroke.


2004 ◽  
Vol 18 (3) ◽  
pp. 493-499 ◽  
Author(s):  
Zafar Nawaz ◽  
Bert W. O’Malley

Abstract The importance of the ubiquitin proteasome pathway in higher eukaryotes has been well established in cell cycle regulation, signal transduction, and cell differentiation, but has only recently been linked to nuclear hormone receptor-regulated gene transcription. Characterization of a number of ubiquitin proteasome pathway enzymes as coactivators and observations that several nuclear receptors are ubiquitinated and degraded in the course of their nuclear activities provide evidence that ubiquitin proteasome-mediated protein degradation plays an integral role in eukaryotic transcription. In addition to receptors, studies have revealed that coactivators are ubiquitinated and degraded via the proteasome. The notion that the ubiquitin proteasome pathway is involved in gene transcription is further strengthened by the fact that ubiquitin proteasome pathway enzymes are recruited to the promoters of target genes and that proteasome-dependent degradation of nuclear receptors is required for efficient transcriptional activity. These findings suggest that protein degradation is coupled with nuclear receptor coactivation activity. It is possible that the ubiquitin proteasome pathway modulates transcription by promoting remodeling and turnover of the nuclear receptor-transcription complex. In this review, we discus the possible role of the ubiquitin proteasome pathway in nuclear hormone receptor-regulated gene transcription.


2015 ◽  
Vol 10 (2) ◽  
pp. 201-213 ◽  
Author(s):  
Chakresh Jain ◽  
Shivam Arora ◽  
Aparna Khanna ◽  
Money Gupta ◽  
Gulshan Wadhwa ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document