scholarly journals Urban Renewal in the Nucleus: Is Protein Turnover by Proteasomes Absolutely Required for Nuclear Receptor-Regulated Transcription?

2004 ◽  
Vol 18 (3) ◽  
pp. 493-499 ◽  
Author(s):  
Zafar Nawaz ◽  
Bert W. O’Malley

Abstract The importance of the ubiquitin proteasome pathway in higher eukaryotes has been well established in cell cycle regulation, signal transduction, and cell differentiation, but has only recently been linked to nuclear hormone receptor-regulated gene transcription. Characterization of a number of ubiquitin proteasome pathway enzymes as coactivators and observations that several nuclear receptors are ubiquitinated and degraded in the course of their nuclear activities provide evidence that ubiquitin proteasome-mediated protein degradation plays an integral role in eukaryotic transcription. In addition to receptors, studies have revealed that coactivators are ubiquitinated and degraded via the proteasome. The notion that the ubiquitin proteasome pathway is involved in gene transcription is further strengthened by the fact that ubiquitin proteasome pathway enzymes are recruited to the promoters of target genes and that proteasome-dependent degradation of nuclear receptors is required for efficient transcriptional activity. These findings suggest that protein degradation is coupled with nuclear receptor coactivation activity. It is possible that the ubiquitin proteasome pathway modulates transcription by promoting remodeling and turnover of the nuclear receptor-transcription complex. In this review, we discus the possible role of the ubiquitin proteasome pathway in nuclear hormone receptor-regulated gene transcription.

2008 ◽  
Vol 6 (1) ◽  
pp. nrs.06006 ◽  
Author(s):  
Sivapriya Ramamoorthy ◽  
Zafar Nawaz

Steroid hormone receptors (SHR) belong to a large family of ligand-activated transcription factors that perform their biological functions by enhancing the transcription of specific target genes. The transactivation functions of SHRs are regulated by a specialized group of proteins called coactivators. The SHR coactivators represent a growing class of proteins with various enzymatic activities that serve to modify the chromatin to facilitate the transcription of SHR target genes. The ubiquitin-proteasome pathway enzymes have also been added to the growing list of enzymatic activities that are recruited to the SHR target gene promoters during transcription. One such ubiquitin-proteasome pathway enzyme to be identified and characterized as a SHR coactivator was E6-associated protein (E6-AP). E6-AP is a hect (homologous to E6-associated protein carboxy-terminal domain) domain containing E3 ubiquitin ligase that possesses two independent separable functions; a coactivation function and an ubiquitin-protein ligase activity. Being a component of the ubiquitin-proteasome pathway, it is postulated that E6-AP may orchestrate the dynamics of steroid hormone receptor-mediated transcription by regulating the degradation of the transcriptional complexes. E6-AP has also been shown to be involved in the regulation of various aspects of reproduction such as prostate and mammary gland development. Furthermore, it has been demonstrated that E6-AP expression is down-regulated in breast and prostate tumors and that the expression of E6-AP is inversely associated with that of estrogen and androgen receptors. This review summarizes our current knowledge about the structures, molecular mechanisms, spatiotemporal expression patterns and biological functions of E6-AP.


2017 ◽  
Vol 37 (suppl_1) ◽  
Author(s):  
Kellie R Machlus ◽  
Prakrith Vijey ◽  
Thomas Soussou ◽  
Joseph E Italiano

Background: Proteasome inhibitors such as bortezomib, a chemotherapeutic used to treat multiple myeloma, induce thrombocytopenia within days of initiation. The mechanism for this thrombocytopenia has been tied to data revealing that proteasome activity is essential for platelet formation. The major pathway of selective protein degradation uses ubiquitin as a marker that targets proteins for proteolysis by the proteasome. This pathway is previously unexplored in megakaryocytes (MKs). Objectives: We aim to define the mechanism by which the ubiquitin-proteasome pathway affects MK maturation and platelet production. Results: Pharmacologic inhibition of proteasome activity blocks proplatelet formation in megakaryocytes. To further characterize how this degradation was occurring, we probed distinct ubiquitin pathways. Inhibition of the ubiquitin-activating enzyme E1 significantly inhibited proplatelet formation up to 73%. In addition, inhibition of the deubiquitinase proteins UCHL5 and USP14 significantly inhibited proplatelet formation up to 83%. These data suggest that an intact ubiquitin pathway is necessary for proplatelet formation. Proteomic and polysome analyses of MKs undergoing proplatelet formation revealed a subset of proteins decreased in proplatelet-producing megakaryocytes, consistent with data showing that protein degradation is necessary for proplatelet formation. Specifically, the centrosome stabilizing proteins Aurora kinase (Aurk) A/B, Tpx2, Cdk1, and Plk1 were decreased in proplatelet-producing MKs. Furthermore, inhibition of AurkA and Plk1, but not Cdk1, significantly inhibited proplatelet formation in vitro over 83%. Conclusions: We hypothesize that proplatelet formation is triggered by centrosome destabilization and disassembly, and that the ubiquitin-proteasome pathway plays a crucial role in this transformation. Specifically, regulation of the AurkA/Plk1/Tpx2 pathway may be key in centrosome integrity and initiation of proplatelet formation. Determination of the mechanism by which the ubiquitin-proteasome pathway regulates the centrosome and facilitates proplatelet formation will allow us to design better strategies to target and reverse thrombocytopenia.


2009 ◽  
Vol 89 (2) ◽  
pp. 381-410 ◽  
Author(s):  
Michael J. Tisdale

Up to 50% of cancer patients suffer from a progressive atrophy of adipose tissue and skeletal muscle, called cachexia, resulting in weight loss, a reduced quality of life, and a shortened survival time. Anorexia often accompanies cachexia, but appears not to be responsible for the tissue loss, particularly lean body mass. An increased resting energy expenditure is seen, possibly arising from an increased thermogenesis in skeletal muscle due to an increased expression of uncoupling protein, and increased operation of the Cori cycle. Loss of adipose tissue is due to an increased lipolysis by tumor or host products. Loss of skeletal muscle in cachexia results from a depression in protein synthesis combined with an increase in protein degradation. The increase in protein degradation may include both increased activity of the ubiquitin-proteasome pathway and lysosomes. The decrease in protein synthesis is due to a reduced level of the initiation factor 4F, decreased elongation, and decreased binding of methionyl-tRNA to the 40S ribosomal subunit through increased phosphorylation of eIF2 on the α-subunit by activation of the dsRNA-dependent protein kinase, which also increases expression of the ubiquitin-proteasome pathway through activation of NFκB. Tumor factors such as proteolysis-inducing factor and host factors such as tumor necrosis factor-α, angiotensin II, and glucocorticoids can all induce muscle atrophy. Knowledge of the mechanisms of tissue destruction in cachexia should improve methods of treatment.


2009 ◽  
Vol 107 (2) ◽  
pp. 438-444 ◽  
Author(s):  
Heather M. Argadine ◽  
Nathan J. Hellyer ◽  
Carlos B. Mantilla ◽  
Wen-Zhi Zhan ◽  
Gary C. Sieck

Previous studies showed that unilateral denervation (DNV) of the rat diaphragm muscle (DIAm) results in loss of myosin heavy chain protein by 1 day after DNV. We hypothesize that DNV decreases net protein balance as a result of activation of the ubiquitin-proteasome pathway. In DIAm strips, protein synthesis was measured by incorporation of 3H-Tyr, and protein degradation was measured by Tyr release at 1, 3, 5, 7, and 14 days after DNV. Total protein ubiquitination, caspase-3 expression/activity, and actin fragmentation were analyzed by Western analysis. We found that, at 3 days after DNV, protein synthesis increased by 77% relative to sham controls. Protein synthesis remained elevated at 5 (85%), 7 (53%), and 14 days (123%) after DNV. At 5 days after DNV, protein degradation increased by 43% relative to sham controls and remained elevated at 7 (49%) and 14 days (74%) after DNV. Thus, by 5 days after DNV, net protein balance decreased by 43% compared with sham controls and was decreased compared with sham at 7 (49%) and 14 days (72%) after DNV. Protein ubiquitination increased at 5 days after DNV and remained elevated. DNV had no effect on caspase-3 activity or actin fragmentation, suggesting that the ubiquitin-proteasome pathway rather than caspase-3 activation is important in the DIAm response to DNV. Early loss of contractile proteins, such as myosin heavy chain, is likely the result of selective protein degradation rather than generalized protein breakdown. Future studies should evaluate this selective effect of DNV.


2021 ◽  
Author(s):  
RUIHONG GONG ◽  
Minting Chen ◽  
Chunhua Huang Huang ◽  
Hoi Leong Xavier Wong ◽  
Hiu Yee Kwan ◽  
...  

Abstract BackgroundKRAS mutation is one of the dominant gene mutations in colorectal cancer (CRC). Up to present, targeting KRAS for CRC treatment remains a clinical challenge. WNT974 (LGK974) is a porcupine inhibitor that interferes Wnt signaling pathway. Artesunate (ART) is a water-soluble semi-synthetic derivative of artemisinin.MethodsThe synergistic effect of ART and WNT974 combination in reducing CRC cell viability was determined by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. RT-PCR was utilized for the mRNA levels of KRAS, CUL7, ANAPC2, UBE2M, RNF123, SYVN1, or β-TrCP. Western blot assay was utilized for the protein levels of KRAS, ANAPC2, β-TrCP, or GSK-3β. Xenograft mouse model assay was performed for the anti-CRC effect of combination of ART and WNT974 in vivo. IHC assay was utilized for the levels of KRAS, β-TrCP, or GSK-3β in tumor tissues. Results Our study shows that the combination of WNT974 and ART exhibits synergistic effect in reducing CRC growth. The combination treatment significantly reduces KRAS protein level and activity in CRC cells. Interestingly, the combination treatment increases E3 ligases ANAPC2 expression. Our data show that overexpression of ANAPC2 significantly reduces KRAS protein levels, which is reversed by MG132. Knockdown of ANAPC2 in CRC abolishes the combination treatment-reduce KRAS expression. Besides, the treatment also increases the expressions of GSK-3β and E3 ligase β-TrCP that is known to degrade GSK-3β-phosphorylated KRAS protein. Knockdown of β-TrCP- and inhibition of GSK-3β abolish the combination treatment-induce KRAS ubiquitination and reduction in expression.ConclusionsOur data clearly show that the combination treatment significantly enhances KRAS protein degradation via the ubiquitination ubiquitin–proteasome pathway, which is also demonstrated in xenograft mouse model. The study provides strong scientific evidence for the development of the combination of WNT974 and ART as KRAS-targeting therapeutics for CRC treatment.


2005 ◽  
Vol 34 (2) ◽  
pp. 281-297 ◽  
Author(s):  
H K Kinyamu ◽  
J Chen ◽  
T K Archer

Over 25 years ago, eukaryotic cells were shown to contain a highly specific system for the selective degradation of short-lived proteins, this system is known as the ubiquitin–proteasome pathway. In this pathway, proteins are targeted for degradation by covalent modification by a small highly conserved protein named ubiquitin. Ubiquitin-mediated degradation of regulatory proteins plays an important role in numerous cell processes, including cell cycle progression, signal transduction and transcriptional regulation. Recent experiments have shown that the ubiquitin–proteasome pathway is also involved in nuclear hormone receptor (NR)-mediated transcriptional regulation. The idea that the ubiquitin–proteasome pathway is involved in NR-mediated transcription is strengthened by experiments showing that ubiquitin–proteasome components are recruited to NR target gene promoters. However, it is not clear how these components modulate NR-mediated chromatin remodeling and gene expression. In this review, we postulate the role of the ubiquitin–proteasome pathway on NR-mediated chromatin remodeling and gene regulation based on the current knowledge from studies implicating the pathway in chromatin structure modifications that are applicable to NR function. Since evidence from this laboratory, using the glucocorticoid receptor responsive mouse mammary tumor virus (MMTV) promoter organized as chromatin, suggest that the ubiquitin–proteasome system may be involved in the elongation phase of transcription, we particularly concentrate on chromatin modifications associated with the elongation phase.


2005 ◽  
Vol 289 (3) ◽  
pp. C766-C773 ◽  
Author(s):  
Ping-Ping Kuang ◽  
Ronald H. Goldstein

Elastin, a major extracellular matrix protein and the core component of elastic fiber, is essential to maintain lung structural integrity and normal physiological function. We previously found that the downregulation of elastin gene transcription by IL-1β is mediated via activation of NF-κB and CCAAT/enhancer binding protein (C/EBP)β, both targets of the ubiquitin-proteasome pathway. To further investigate the molecular mechanisms that underlie the control of elastin gene expression, we disrupted the ubiquitin-proteasome pathway with specific proteasome inhibitors. We found that specific proteasome inhibitors decreased the steady-state level of elastin mRNA in a dose-responsive manner. Run-on assay and promoter reporter study indicated that the proteasome inhibitor MG-132 repressed the rate of elastin transcription. MG-132 did not affect mRNA levels of NF-κB and C/EBPβ, or the nuclear presence of NF-κB, but markedly increased C/EBPβ isoforms, including liver-enriched transcriptional activating protein and liver-enriched transcriptional inhibitory protein. Addition of cycloheximide blocked these increases and the downregulation of elastin mRNA by MG-132. The MG-132-induced downregulation of elastin transcription was dependent on C/EBPβ expression as assessed with small interfering RNA. These results indicate that the ubiquitin-proteasome pathway plays an essential role in maintaining elastin gene expression in lung fibroblasts. Disruption of this pathway results in the downregulation of tropoelastin transcription via posttranscriptionally induced C/EBPβ isoforms.


2021 ◽  
Author(s):  
Rui-Hong Gong ◽  
Minting Chen ◽  
Chunhua Huang ◽  
Hoi Leong Xavier Wong ◽  
Hiu Yee Kwan ◽  
...  

Abstract BackgroundKRAS mutation is one of the dominant gene mutations in colorectal cancer (CRC). Up to present, targeting KRAS for CRC treatment remains a clinical challenge. WNT974 (LGK974) is a porcupine inhibitor that interferes Wnt signaling pathway. Artesunate (ART) is a water-soluble semi-synthetic derivative of artemisinin.MethodsThe synergistic effect of ART and WNT974 combination in reducing CRC cell viability was determined by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. RT-PCR was utilized for the mRNA levels of KRAS, CUL7, ANAPC2, UBE2M, RNF123, SYVN1, or β-TrCP. Western blot assay was utilized for the protein levels of KRAS, ANAPC2, β-TrCP, or GSK-3β. Xenograft mouse model assay was performed for the anti-CRC effect of combination of ART and WNT974 in vivo. IHC assay was utilized for the levels of KRAS, β-TrCP, or GSK-3β in tumor tissues.Results Our study shows that the combination of WNT974 and ART exhibits synergistic effect in reducing CRC growth. The combination treatment significantly reduces KRAS protein level and activity in CRC cells. Interestingly, the combination treatment increases E3 ligases ANAPC2 expression. Our data show that overexpression of ANAPC2 significantly reduces KRAS protein levels, which is reversed by MG132. Knockdown of ANAPC2 in CRC abolishes the combination treatment-reduce KRAS expression. Besides, the treatment also increases the expressions of GSK-3β and E3 ligase β-TrCP that is known to degrade GSK-3β-phosphorylated KRAS protein. Knockdown of β-TrCP- and inhibition of GSK-3β abolish the combination treatment-induce KRAS ubiquitination and reduction in expression.ConclusionsOur data clearly show that the combination treatment significantly enhances KRAS protein degradation via the ubiquitination ubiquitin–proteasome pathway, which is also demonstrated in xenograft mouse model. The study provides strong scientific evidence for the development of the combination of WNT974 and ART as KRAS-targeting therapeutics for CRC treatment.


Sign in / Sign up

Export Citation Format

Share Document