scholarly journals Testosterone-stimulated growth of the rat prostate may be driven by tissue hypoxia and hypoxia-inducible factor-1α

2007 ◽  
Vol 196 (1) ◽  
pp. 11-19 ◽  
Author(s):  
Stina Häggström Rudolfsson ◽  
Anders Bergh

Testosterone-stimulated growth of the ventral prostate (VP) in castrated rats is preceded by angiogenesis, but the mechanisms coordinating vascular and tissue growth are unknown. Adult rats were castrated and some treated with testosterone. Tissue hypoxia was studied morphologically using the hypoxia marker pimonidazole (Hypoxyprobe), hypoxia-inducible factor-1 (HIF-1) α, vascular endothelial growth factor (VEGF), and carbonicanhydrase 9 (CA-9) levels by western blotting and quantitative RT-PCR. In the intact untreated prostate, most glands were unstained by the hypoxia marker but already 1 day after castration most epithelial cells in the VP were stained. Seven days after castration prostate glands were apparently normoxic again, and HIF-1α, VEGF, and CA-9 were decreased. Treatment of 7-day castrated rats with testosterone resulted in increased epithelial hypoxyprobe staining and increased HIF-1α, VEGF, and CA-9 levels. The transient increase in tissue hypoxia after testosterone treatment is probably caused by a temporary mismatch between oxygen consumption and supply. Treatment of prostate epithelial cells in vitro under normoxic conditions also increased HIF-1α, and this could be blocked if epidermal growth factor receptor (EGFR) signaling was blocked with gefitinib. In vivo gefitinib could, however, not block the testosterone induced increase in HIF-1α. Testosterone may thus induce HIF-1α and its downstream angiogenesis promoting genes by at least two mechanisms, hypoxia and EGFR signaling. Transient epithelial cell hypoxia could by rapidly increasing HIF-1α and VEGF be an essential coordinator of testosterone-stimulated vascular and glandular growth.

2013 ◽  
Vol 815 ◽  
pp. 345-349 ◽  
Author(s):  
Ching Wen Hsu ◽  
Ping Liu ◽  
Song Song Zhu ◽  
Feng Deng ◽  
Bi Zhang

Here we reported a combined technique for articular cartilage repair, consisting of bone arrow mesenchymal stem cells (BMMSCs) and poly (dl-lactide-co-glycolide-b-ethylene glycol-b-dl-lactide-co-glycolide) (PLGA-PEG-PLGA) triblock copolymers carried with tissue growth factor (TGF-belat1). In the present study, BMMSCs seeded on PLGA-PEG-PLGA with were incubated in vitro, carried or not TGF-belta1, Then the effects of the composite on repair of cartilage defect were evaluated in rabbit knee joints in vivo. Full-thickness cartilage defects (diameter: 5 mm; depth: 3 mm) in the patellar groove were either left empty (n=18), implanted with BMMSCs/PLGA (n=18), TGF-belta1 modified BMMSCs/PLGA-PEG-PLGA. The defect area was examined grossly, histologically at 6, 24 weeks postoperatively. After implantation, the BMMSCs /PLGA-PEG-PLGA with TGF-belta1 group showed successful hyaline-like cartilage regeneration similar to normal cartilage, which was superior to the other groups using gross examination, qualitative and quantitative histology. These findings suggested that a combination of BMMSCs/PLGA-PEG-PLGA carried with tissue growth factor (TGF-belat1) may be an alternative treatment for large osteochondral defects in high loading sites.


2016 ◽  
Vol 62 (3) ◽  
pp. 271-278 ◽  
Author(s):  
Md. Rashedul ISLAM ◽  
Kazuki YAMAGAMI ◽  
Yuka YOSHII ◽  
Nobuhiko YAMAUCHI

1997 ◽  
Vol 53 (8) ◽  
pp. 1149-1159 ◽  
Author(s):  
E.Siobhan McCormack ◽  
Gary V. Borzillo ◽  
Claire Ambrosino ◽  
Gilda Mak ◽  
Laurie Hamablet ◽  
...  

2019 ◽  
Vol 17 (1) ◽  
Author(s):  
Junsheng Dong ◽  
Jun Li ◽  
Jianji Li ◽  
Luying Cui ◽  
Xia Meng ◽  
...  

Abstract Background Bovine endometrial epithelial cells (BEECs) undergo regular regeneration after calving. Elevated cortisol concentrations have been reported in postpartum cattle due to various stresses. However, the effects of the physiological level of cortisol on proliferation in BEECs have not been reported. The aim of this study was to investigate whether cortisol can influence the proliferation properties of BEECs and to clarify the possible underlying mechanism. Methods BEECs were treated with different concentrations of cortisol (5, 15 and 30 ng/mL). The mRNA expression of various growth factors was detected by quantitative reverse transcription-polymerase chain reaction (qPCR), progression of the cell cycle in BEECs was measured using flow cytometric analysis, and the activation of the Wnt/β-catenin and phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT) signaling pathways was detected with Western blot and immunofluorescence. Results Cortisol treatment resulted in upregulated mRNA levels of vascular endothelial growth factor (VEGF) and connective tissue growth factor (CTGF); however, it had no influence on transforming growth factor-beta1 (TGF-β1). Cortisol (15 ng/mL) accelerated the cell cycle transition from the G0/G1 to the S phase. Cortisol upregulated the expression of β-catenin, c-Myc, and cyclinD1 and promoted the phosphorylation of PI3K and AKT. Conclusions These results demonstrated that cortisol may promote proliferation in BEECs by increasing the expression of some growth factors and activating the Wnt/β-catenin and PI3K/AKT signaling pathways.


PLoS ONE ◽  
2015 ◽  
Vol 10 (8) ◽  
pp. e0133689 ◽  
Author(s):  
Fabio A. Mendes ◽  
Juliana M. Coelho Aguiar ◽  
Suzana A. Kahn ◽  
Alice H. Reis ◽  
Luiz Gustavo Dubois ◽  
...  

2021 ◽  
Author(s):  
Yan Lin ◽  
Mingjing Wang ◽  
Zhen Xiao ◽  
Zhiyan Jiang

Abstract Adenoid hypertrophy (AH) can cause harmful effects on untreated children, which include mouth breathing, chronic intermittent hypoxia, sleep disordered breathing (SDB), and even some behavioral problems. However, the molecular mechanisms underlying this pathophysiological process have remained poorly understood. In this study, with use of a variety of biochemical approaches including gene silencing and transiently ectopic protein expression, we examined the molecular effectors involved in this process in an in vitro model of human tonsil epithelial cells (HTECs). We found that a hypoxic condition caused a dramatic upregulation of SUMO-1 expression, a member of the ubiquitin-like protein family, which in turn stabilized hypoxia-inducible factor (HIF)-1α by sumoylating this HIF subunit and thus preventing its ubiquitination and degradation in HTECs. We also found that activating HIF-1α promoted permeability of HTEC cells as well as production and secretion of a variety of proinflammatory cytokines including IL-6, IL-8, and TNF-α, and pro-angiogenic growth factor VEGF. Furthermore, our data showed that hypoxia-induced inflammation was markedly inhibited by M2 macrophages that possess potent anti-inflammatory function. Our results suggest that selectively inhibiting the SUMO-1-HIF-1α signaling pathway leads to inflammatory responses in human tonsil epithelial cells, which might be a novel therapeutic approach for managing hypoxia-induced SDB resulting from AH.


Sign in / Sign up

Export Citation Format

Share Document