scholarly journals The chicken type III GnRH receptor homologue is predominantly expressed in the pituitary, and exhibits similar ligand selectivity to the type I receptor

2009 ◽  
Vol 202 (1) ◽  
pp. 179-190 ◽  
Author(s):  
Nerine T Joseph ◽  
Kevin Morgan ◽  
Robin Sellar ◽  
Derek McBride ◽  
Robert P Millar ◽  
...  

Two GnRH isoforms (cGnRH-I and GnRH-II) and two GnRH receptor subtypes (cGnRH-R-I and cGnRH-R-III) occur in chickens. Differential roles for these molecules in regulating gonadotrophin secretion or other functions are unclear. To investigate this we cloned cGnRH-R-III from a broiler chicken and compared its structure, expression and pharmacological properties with cGnRH-R-I. The broiler cGnRH-R-III cDNA was 100% identical to the sequence reported in the red jungle fowl and white leghorn breed. Pituitary cGnRH-R-III mRNA was ∼1400-fold more abundant than cGnRH-R-I mRNA. Northern analysis indicated a single cGnRH-R-III transcript. A pronounced sex and age difference existed, with higher pituitary transcript levels in sexually mature females versus juvenile females. In contrast, higher expression levels occurred in juvenile males versus sexually mature males. Functional studies in COS-7 cells indicated that cGnRH-R-III has a higher binding affinity for GnRH-II than cGnRH-I (Kd: 0.57 vs 19.8 nM) with more potent stimulation of inositol phosphate production (ED50: 0.8 vs 4.38 nM). Similar results were found for cGnRH-R-I, (Kd: 0.51 vs 10.8 nM) and (ED50: 0.7 vs 2.8 nM). The initial rate of internalisation was faster for cGnRH-R-III than cGnRH-R-I (26 vs 15.8%/min). Effects of GnRH antagonists were compared at the two receptors. Antagonist #27 distinguished between cGnRH-R-I and cGnRH-R-III (IC50: 2.3 vs 351 nM). These results suggest that cGnRH-R-III is probably the major mediator of pituitary gonadotroph function, that antagonist #27 may allow delineation of receptor subtype function in vitro and in vivo and that tissue-specific recruitment of cGnRH-R isoforms has occurred during evolution.

1995 ◽  
Vol 268 (5) ◽  
pp. E825-E831 ◽  
Author(s):  
V. Heluy ◽  
M. Breuiller-Fouche ◽  
F. Cavaille ◽  
T. Fournier ◽  
F. Ferre

The aim of the present study was to characterize endothelin (ET)-receptors in human myometrial cells in culture. 125I-labeled ET-1 binding to myometrial cells was specific and saturable, with a dissociation constant of 64.2 +/- 12.8 pM. Competition binding studies showed the following order of potency: ET-1 > ET-3, which is consistent with the presence of the ETA receptor subtype. FR-139317 and BQ-123, two ETA antagonists, both inhibited 125I-ET-1 binding. BQ-123 only elicited a partial inhibition. The fraction resistant to BQ-123 did not represent the ETB receptor subtype, since no specific 125I-ET-3 binding could be detected. ET-1 and ET-3 were found to stimulate [3H]inositol phosphate (IP) accumulation in cultured myometrial cells, with corresponding half-maximal effective concentration values of 0.26 +/- 0.04 and 87 +/- 17 nM, respectively. Both ETA antagonists inhibited ET-1-induced accumulation of [3H]IP. BQ-123 was only a partial inhibitor, whereas FR-139317 totally suppressed ET-1-stimulated production of [3H]IP. We conclude that human myometrial cells in culture exclusively possess ETA receptor subtypes coupled to phospholipase C.


2007 ◽  
Vol 21 (1) ◽  
pp. 281-292 ◽  
Author(s):  
Sipho Mamputha ◽  
Zhi-liang Lu ◽  
Roger W. Roeske ◽  
Robert P. Millar ◽  
Arieh A. Katz ◽  
...  

Abstract GnRH I regulates reproduction. A second form, designated GnRH II, selectively binds type II GnRH receptors. Amino acids of the type I GnRH receptor required for binding of GnRH I (Asp2.61(98), Asn2.65(102), and Lys3.32(121)) are conserved in the type II GnRH receptor, but their roles in receptor function are unknown. We have delineated their functions using mutagenesis, signaling and binding assays, immunoblotting, and computational modeling. Mutating Asp2.61(97) to Glu or Ala, Asn2.65(101) to Ala, or Lys3.32(120) to Gln decreased potency of GnRH II-stimulated inositol phosphate production. Consistent with proposed roles in ligand recognition, mutations eliminated measurable binding of GnRH II, whereas expression of mutant receptors was not decreased. In detailed analysis of how these residues affect ligand-dependent signaling, [Trp2]-GnRH I showed lesser decreases in potency than GnRH I at the Asp2.61(97)Glu mutant. In contrast, [Trp2]-GnRH II showed the same loss of potency as GnRH II at this mutant. This suggests that Asp2.61(97) contributes to recognition of His2 of GnRH I, but not of GnRH II. GnRH II showed a large decrease in potency at the Asn2.65(101)Ala mutant compared with analogs lacking the C⋕O group of Gly10NH2. This suggests that Asn2.65(101) recognizes Gly10NH2 of GnRH II. GnRH agonists showed large decreases in potency at the Lys3.32(120)Gln mutant, but antagonist activity was unaffected. This suggests that Lys3.32(120) recognizes agonists, but not antagonists, as in the type I receptor. These data indicate that roles of conserved residues are similar, but not identical, in the type I and II GnRH receptors.


Blood ◽  
2000 ◽  
Vol 95 (11) ◽  
pp. 3412-3422 ◽  
Author(s):  
Samer S. El-Daher ◽  
Yatin Patel ◽  
Ashia Siddiqua ◽  
Sheila Hassock ◽  
Scott Edmunds ◽  
...  

Platelet activation is associated with an increase of cytosolic Ca++ levels. The 1,4,5IP3receptors [1,4,5IP3R] are known to mediate Ca++ release from intracellular stores of many cell types. Currently there are at least 3 distinct subtypes of1,4,5IP3R—type I, type II, and type III—with suggestions of distinct roles in Ca++ elevation. Specific receptors for 1,3,4,5IP4 belonging to the GAP1 family have also been described though their involvement with Ca++ regulation is controversial. In this study we report that platelets contain all 3 subtypes of1,4,5IP3R but in different amounts. Type I and type II receptors are predominant. In studies using highly purified platelet plasma (PM) and intracellular membranes (IM) we report a distinct localization of these receptors. The PM fractions were found to contain the type III 1,4,5IP3R and GAP1IP4BP in contrast to IM, which contained type I1,4,5IP3R. The type II receptor exhibited a dual distribution. In studies examining the labeling of surface proteins with biotin in intact platelets only the type III1,4,5IP3R was significantly labeled. Immunogold studies of ultracryosections of human platelets showed significantly more labeling of the PM with the type III receptor antibodies than with type I receptor antibodies. Ca++ flux studies were carried out with the PM to demonstrate in vitro function of inositol phosphate receptors. Ca++ release activities were present with both 1,4,5IP3 and1,3,4,5IP4 (EC50 = 1.3 and 0.8 μmol/L, respectively). Discrimination of the Ca++-releasing activities was demonstrated with cyclic adenosine monophosphate (cAMP)-dependent protein kinase (cAMP-PK) specifically inhibiting 1,4,5IP3 but not1,3,4,5IP4-induced Ca++ flux. In experiments with both PM and intact platelets, the1,4,5IP3Rs but not GAP1IP4BP were found to be substrates of cAMP-PK and cGMP-PK. Thus the Ca++ flux property of1,3,4,5IP4 is insensitive to cAMP-PK. These studies suggest distinct roles for the1,4,5IP3R subtypes in Ca++movements, with the type III receptor and GAP1IP4BPassociated with cation entry in human platelets and the type I receptor involved with Ca++ release from intracellular stores.


Blood ◽  
2000 ◽  
Vol 95 (11) ◽  
pp. 3412-3422 ◽  
Author(s):  
Samer S. El-Daher ◽  
Yatin Patel ◽  
Ashia Siddiqua ◽  
Sheila Hassock ◽  
Scott Edmunds ◽  
...  

Abstract Platelet activation is associated with an increase of cytosolic Ca++ levels. The 1,4,5IP3receptors [1,4,5IP3R] are known to mediate Ca++ release from intracellular stores of many cell types. Currently there are at least 3 distinct subtypes of1,4,5IP3R—type I, type II, and type III—with suggestions of distinct roles in Ca++ elevation. Specific receptors for 1,3,4,5IP4 belonging to the GAP1 family have also been described though their involvement with Ca++ regulation is controversial. In this study we report that platelets contain all 3 subtypes of1,4,5IP3R but in different amounts. Type I and type II receptors are predominant. In studies using highly purified platelet plasma (PM) and intracellular membranes (IM) we report a distinct localization of these receptors. The PM fractions were found to contain the type III 1,4,5IP3R and GAP1IP4BP in contrast to IM, which contained type I1,4,5IP3R. The type II receptor exhibited a dual distribution. In studies examining the labeling of surface proteins with biotin in intact platelets only the type III1,4,5IP3R was significantly labeled. Immunogold studies of ultracryosections of human platelets showed significantly more labeling of the PM with the type III receptor antibodies than with type I receptor antibodies. Ca++ flux studies were carried out with the PM to demonstrate in vitro function of inositol phosphate receptors. Ca++ release activities were present with both 1,4,5IP3 and1,3,4,5IP4 (EC50 = 1.3 and 0.8 μmol/L, respectively). Discrimination of the Ca++-releasing activities was demonstrated with cyclic adenosine monophosphate (cAMP)-dependent protein kinase (cAMP-PK) specifically inhibiting 1,4,5IP3 but not1,3,4,5IP4-induced Ca++ flux. In experiments with both PM and intact platelets, the1,4,5IP3Rs but not GAP1IP4BP were found to be substrates of cAMP-PK and cGMP-PK. Thus the Ca++ flux property of1,3,4,5IP4 is insensitive to cAMP-PK. These studies suggest distinct roles for the1,4,5IP3R subtypes in Ca++movements, with the type III receptor and GAP1IP4BPassociated with cation entry in human platelets and the type I receptor involved with Ca++ release from intracellular stores.


1994 ◽  
Vol 266 (2) ◽  
pp. C335-C342 ◽  
Author(s):  
G. E. Watson ◽  
D. J. Culp

Mucin glycoprotein secretion by rat sublingual glands is regulated primarily by muscarinic cholinergic receptors. Studies were conducted to identify muscarinic receptor subtypes in whole glands as well as in isolated acinar structures. In radioligand binding studies, we used subtype-selective antagonists in competition studies to initially determine receptor subtype heterogeneity. In membranes from whole glands, both pirenzepine and methoctramine displayed two affinity sites (M1 and M3) of nearly equal proportions. In contrast, acinar membranes contained a 1:2 and 2:1 ratio of M1 to M3 sites for pirenzepine and methoctramine, respectively. In all cases, p-fluoro-hexahydro-siladifenidol and 4-diphenylacetoxy-N-methylpiperidine each bound to a single class of binding sites. Northern analysis using oligonucleotide probes specific for the 5' ends of the translated regions of m1 through m5 receptors detected only m1 and m3 subtypes in poly(A)+ RNA from whole glands. We also used antisera specific for each receptor subtype to immunoprecipitate solubilized receptors from membrane preparations. Only m1 (51.7 and 64.9%) and m3 (48.3 and 34.7%) subtypes were found consistently in membranes from whole sublingual glands and isolated acini, respectively. Studies with other exocrine glands generally described the predominance of m3 receptors, and m1 receptors, if present, were presumably associated with contaminating neural structures. Our results therefore demonstrate that mucous acini from rat sublingual glands contain abundant amounts of both m1 and m3 receptors.


1999 ◽  
Vol 162 (1) ◽  
pp. 117-126 ◽  
Author(s):  
R Millar ◽  
D Conklin ◽  
C Lofton-Day ◽  
E Hutchinson ◽  
B Troskie ◽  
...  

Gonadotropin releasing hormone (GnRH) regulates the reproductive system through a specific G-protein-coupled receptor (GPCR) in pituitary gonadotropes. The existence of two (or more) forms of GnRH in most vertebrates suggested the existence of GnRH receptor subtypes (I and II). Using sequence information for extracellular loop 3 of a putative Type II GnRH receptor from a reptile species, we have looked for a Type II GnRH receptor gene in the human genome EST (expressed sequence tag) database. A homolog was identified which has 45% and 41% amino acid identity with exons 2 and 3 of the known human GnRH pituitary receptor (designated Type I) and much lower homology with all other GPCRs. A total of 27 contiguous ESTs was found and comprised a continuous sequence of 1642 nucleotides. The EST sequences were confirmed in the cloned human gene and in PCR products of cDNA from several tissues. All EST transcripts detected were in the antisense orientation with respect to the novel GnRH receptor sequence and were highly expressed in a wide range of human brain and peripheral tissues. PCR of cDNA from a wide range of tissues revealed that intronic sequence equivalent to intron 2 of the Type I GnRH receptor was retained. The failure to splice out putative intron sequences in transcripts which spanned exon-intron boundaries is expected in antisense transcripts, as candidate donor and acceptor sites were only present in the gene when transcribed in the orientation encoding the GnRH receptor homolog. No transcripts extended 5' to the sequence corresponding to intron 2 of the Type I GnRH as the antisense transcripts terminated in poly A due to the presence of a polyadenylation signal sequence in the putative intron 2 when transcribed in the antisense orientation. These findings suggest that a Type II GnRH receptor gene has arisen during vertebrate evolution and is also present in the human. However, the receptor may have become vestigial in the human, possibly due to the abundant and universal tissue transcription of the opposite DNA strand to produce antisense RNA.


Endocrinology ◽  
2009 ◽  
Vol 150 (6) ◽  
pp. 2847-2856 ◽  
Author(s):  
Javier A. Tello ◽  
Nancy M. Sherwood

In vertebrates, activation of the GnRH receptor is necessary to initiate the reproductive cascade. However, little is known about the characteristics of GnRH receptors before the vertebrates evolved. Recently genome sequencing was completed for amphioxus, Branchiostoma floridae. To understand the GnRH receptors (GnRHR) from this most basal chordate, which is also classified as an invertebrate, we cloned and characterized four GnRHR cDNAs encoded in the amphioxus genome. We found that incubation of GnRH1 (mammalian GnRH) and GnRH2 (chicken GnRH II) with COS7 cells heterologously expressing the amphioxus GnRHRs caused potent intracellular inositol phosphate turnover in two of the receptors. One of the two receptors displayed a clear preference for GnRH1 over GnRH2, a characteristic not previously seen outside the type I mammalian GnRHRs. Phylogenetic analysis grouped the four receptors into two paralogous pairs, with one pair grouping basally with the vertebrate GnRH receptors and the other grouping with the octopus GnRHR-like sequence and the related receptor for insect adipokinetic hormone. Pharmacological studies showed that octopus GnRH-like peptide and adipokinetic hormone induced potent inositol phosphate turnover in one of these other two amphioxus receptors. These data demonstrate the functional conservation of two distinct types of GnRH receptors at the base of chordates. We propose that one receptor type led to vertebrate GnRHRs, whereas the other type, related to the mollusk GnRHR-like receptor, was lost in the vertebrate lineage. This is the first report to suggest that distinct invertebrate and vertebrate GnRHRs are present simultaneously in a basal chordate, amphioxus.


Cells ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 52
Author(s):  
Eugenia V. Gurevich ◽  
Vsevolod V. Gurevich

Many receptors for neurotransmitters, such as dopamine, norepinephrine, acetylcholine, and neuropeptides, belong to the superfamily of G protein-coupled receptors (GPCRs). A general model posits that GPCRs undergo two-step homologous desensitization: the active receptor is phosphorylated by kinases of the G protein-coupled receptor kinase (GRK) family, whereupon arrestin proteins specifically bind active phosphorylated receptors, shutting down G protein-mediated signaling, facilitating receptor internalization, and initiating distinct signaling pathways via arrestin-based scaffolding. Here, we review the mechanisms of GRK-dependent regulation of neurotransmitter receptors, focusing on the diverse modes of GRK-mediated phosphorylation of receptor subtypes. The immediate signaling consequences of GRK-mediated receptor phosphorylation, such as arrestin recruitment, desensitization, and internalization/resensitization, are equally diverse, depending not only on the receptor subtype but also on phosphorylation by GRKs of select receptor residues. We discuss the signaling outcome as well as the biological and behavioral consequences of the GRK-dependent phosphorylation of neurotransmitter receptors where known.


Author(s):  
Ümit Suat Mayadali ◽  
Jérome Fleuriet ◽  
Michael Mustari ◽  
Hans Straka ◽  
Anja Kerstin Ellen Horn

AbstractExtraocular motoneurons initiate dynamically different eye movements, including saccades, smooth pursuit and vestibulo-ocular reflexes. These motoneurons subdivide into two main types based on the structure of the neuro-muscular interface: motoneurons of singly-innervated (SIF), and motoneurons of multiply-innervated muscle fibers (MIF). SIF motoneurons are thought to provoke strong and brief/fast muscle contractions, whereas MIF motoneurons initiate prolonged, slow contractions. While relevant for adequate functionality, transmitter and ion channel profiles associated with the morpho-physiological differences between these motoneuron types, have not been elucidated so far. This prompted us to investigate the expression of voltage-gated potassium, sodium and calcium ion channels (Kv1.1, Kv3.1b, Nav1.6, Cav3.1–3.3, KCC2), the transmitter profiles of their presynaptic terminals (vGlut1 and 2, GlyT2 and GAD) and transmitter receptors (GluR2/3, NMDAR1, GlyR1α) using immunohistochemical analyses of abducens and trochlear motoneurons and of abducens internuclear neurons (INTs) in macaque monkeys. The main findings were: (1) MIF and SIF motoneurons express unique voltage-gated ion channel profiles, respectively, likely accounting for differences in intrinsic membrane properties. (2) Presynaptic glutamatergic synapses utilize vGlut2, but not vGlut1. (3) Trochlear motoneurons receive GABAergic inputs, abducens neurons receive both GABAergic and glycinergic inputs. (4) Synaptic densities differ between MIF and SIF motoneurons, with MIF motoneurons receiving fewer terminals. (5) Glutamatergic receptor subtypes differ between MIF and SIF motoneurons. While NMDAR1 is intensely expressed in INTs, MIF motoneurons lack this receptor subtype entirely. The obtained cell-type-specific transmitter and conductance profiles illuminate the structural substrates responsible for differential contributions of neurons in the abducens and trochlear nuclei to eye movements.


2010 ◽  
Vol 103 (6) ◽  
pp. 3378-3388 ◽  
Author(s):  
Scott A. Wellnitz ◽  
Daine R. Lesniak ◽  
Gregory J. Gerling ◽  
Ellen A. Lumpkin

Touch is initiated by diverse somatosensory afferents that innervate the skin. The ability to manipulate and classify receptor subtypes is prerequisite for elucidating sensory mechanisms. Merkel cell–neurite complexes, which distinguish shapes and textures, are experimentally tractable mammalian touch receptors that mediate slowly adapting type I (SAI) responses. The assessment of SAI function in mutant mice has been hindered because previous studies did not distinguish SAI responses from slowly adapting type II (SAII) responses, which are thought to arise from different end organs, such as Ruffini endings. Thus we sought methods to discriminate these afferent types. We developed an epidermis-up ex vivo skin–nerve chamber to record action potentials from afferents while imaging Merkel cells in intact receptive fields. Using model-based cluster analysis, we found that two types of slowly adapting receptors were readily distinguished based on the regularity of touch-evoked firing patterns. We identified these clusters as SAI (coefficient of variation = 0.78 ± 0.09) and SAII responses (0.21 ± 0.09). The identity of SAI afferents was confirmed by recording from transgenic mice with green fluorescent protein–expressing Merkel cells. SAI receptive fields always contained fluorescent Merkel cells ( n = 10), whereas SAII receptive fields lacked these cells ( n = 5). Consistent with reports from other vertebrates, mouse SAI and SAII responses arise from afferents exhibiting similar conduction velocities, receptive field sizes, mechanical thresholds, and firing rates. These results demonstrate that mice, like other vertebrates, have two classes of slowly adapting light-touch receptors, identify a simple method to distinguish these populations, and extend the utility of skin–nerve recordings for genetic dissection of touch receptor mechanisms.


Sign in / Sign up

Export Citation Format

Share Document